|
""" |
|
This file come from: https://github.com/microsoft/ToRA/blob/main/src/utils/python_executor.py |
|
""" |
|
import io |
|
import regex |
|
import pickle |
|
import traceback |
|
import copy |
|
import datetime |
|
import multiprocessing |
|
import dateutil.relativedelta |
|
import multiprocess |
|
from multiprocess import Pool |
|
from typing import Any, Dict, Optional |
|
from pebble import ProcessPool |
|
from tqdm import tqdm |
|
from concurrent.futures import TimeoutError |
|
from functools import partial |
|
from timeout_decorator import timeout |
|
from contextlib import redirect_stdout |
|
|
|
|
|
class GenericRuntime: |
|
GLOBAL_DICT = {} |
|
LOCAL_DICT = None |
|
HEADERS = [] |
|
def __init__(self): |
|
self._global_vars = copy.copy(self.GLOBAL_DICT) |
|
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None |
|
|
|
for c in self.HEADERS: |
|
self.exec_code(c) |
|
|
|
def exec_code(self, code_piece: str) -> None: |
|
if regex.search(r'(\s|^)?input\(', code_piece) or regex.search(r'(\s|^)?os.system\(', code_piece): |
|
raise RuntimeError() |
|
exec(code_piece, self._global_vars) |
|
|
|
def eval_code(self, expr: str) -> Any: |
|
return eval(expr, self._global_vars) |
|
|
|
def inject(self, var_dict: Dict[str, Any]) -> None: |
|
for k, v in var_dict.items(): |
|
self._global_vars[k] = v |
|
|
|
@property |
|
def answer(self): |
|
return self._global_vars['answer'] |
|
|
|
class DateRuntime(GenericRuntime): |
|
GLOBAL_DICT = { |
|
'datetime': datetime.datetime, |
|
'timedelta': dateutil.relativedelta.relativedelta, |
|
'relativedelta': dateutil.relativedelta.relativedelta |
|
} |
|
|
|
|
|
class CustomDict(dict): |
|
def __iter__(self): |
|
return list(super().__iter__()).__iter__() |
|
|
|
class ColorObjectRuntime(GenericRuntime): |
|
GLOBAL_DICT = {'dict': CustomDict} |
|
|
|
|
|
class PythonExecutor: |
|
def __init__( |
|
self, |
|
runtime: Optional[Any] = None, |
|
get_answer_symbol: Optional[str] = None, |
|
get_answer_expr: Optional[str] = None, |
|
get_answer_from_stdout: bool = False, |
|
timeout_length: int = 5, |
|
) -> None: |
|
self.runtime = runtime if runtime else GenericRuntime() |
|
self.answer_symbol = get_answer_symbol |
|
self.answer_expr = get_answer_expr |
|
self.get_answer_from_stdout = get_answer_from_stdout |
|
self.timeout_length = timeout_length |
|
|
|
def process_generation_to_code(self, gens: str): |
|
return [g.split('\n') for g in gens] |
|
|
|
@staticmethod |
|
def execute( |
|
code, |
|
get_answer_from_stdout = None, |
|
runtime = None, |
|
answer_symbol = None, |
|
answer_expr = None, |
|
timeout_length = 10, |
|
): |
|
try: |
|
if get_answer_from_stdout: |
|
program_io = io.StringIO() |
|
with redirect_stdout(program_io): |
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code)) |
|
program_io.seek(0) |
|
result = program_io.readlines()[-1] |
|
elif answer_symbol: |
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code)) |
|
result = runtime._global_vars[answer_symbol] |
|
elif answer_expr: |
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code)) |
|
result = timeout(timeout_length)(runtime.eval_code)(answer_expr) |
|
else: |
|
timeout(timeout_length)(runtime.exec_code)('\n'.join(code[:-1])) |
|
result = timeout(timeout_length)(runtime.eval_code)(code[-1]) |
|
exec_info = "Done" |
|
str(result) |
|
pickle.dumps(result) |
|
except: |
|
result = '' |
|
exec_info = traceback.format_exc().split('\n')[-2] |
|
return result, exec_info |
|
|
|
def apply(self, code): |
|
return self.batch_apply([code])[0] |
|
|
|
def batch_apply(self, batch_code): |
|
all_code_snippets = self.process_generation_to_code(batch_code) |
|
|
|
timeout_cnt = 0 |
|
all_exec_results = [] |
|
with ProcessPool(max_workers=min(len(all_code_snippets), multiprocessing.cpu_count())) as pool: |
|
executor = partial( |
|
self.execute, |
|
get_answer_from_stdout=self.get_answer_from_stdout, |
|
runtime=self.runtime, |
|
answer_symbol=self.answer_symbol, |
|
answer_expr=self.answer_expr, |
|
timeout_length=self.timeout_length, |
|
) |
|
future = pool.map(executor, all_code_snippets, timeout=self.timeout_length) |
|
iterator = future.result() |
|
|
|
if len(all_code_snippets) > 100: |
|
progress_bar = tqdm(total=len(all_code_snippets), desc="Execute") |
|
else: |
|
progress_bar = None |
|
|
|
while True: |
|
try: |
|
result = next(iterator) |
|
all_exec_results.append(result) |
|
except StopIteration: |
|
break |
|
except TimeoutError as error: |
|
print(error) |
|
all_exec_results.append(("", "Timeout Error")) |
|
timeout_cnt += 1 |
|
except Exception as error: |
|
print(error) |
|
exit() |
|
if progress_bar is not None: |
|
progress_bar.update(1) |
|
|
|
if progress_bar is not None: |
|
progress_bar.close() |
|
|
|
batch_results = [] |
|
for code, (result, exec_info) in zip(all_code_snippets, all_exec_results): |
|
batch_results.append((result, exec_info)) |
|
return batch_results |
|
|
|
|
|
def _test(): |
|
batch_code = [ |
|
""" |
|
print("Hello world!") |
|
""" |
|
] |
|
|
|
executor = PythonExecutor(get_answer_from_stdout=True) |
|
predictions = executor.apply(batch_code[0]) |
|
print(predictions) |
|
|
|
|
|
if __name__ == '__main__': |
|
_test() |