DeepSolanaCoder
/
DeepSeek-Coder-main
/finetune
/venv
/lib
/python3.12
/site-packages
/datasets
/info.py
| # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """DatasetInfo record information we know about a dataset. | |
| This includes things that we know about the dataset statically, i.e.: | |
| - description | |
| - canonical location | |
| - does it have validation and tests splits | |
| - size | |
| - etc. | |
| This also includes the things that can and should be computed once we've | |
| processed the dataset as well: | |
| - number of examples (in each split) | |
| - etc. | |
| """ | |
| import copy | |
| import dataclasses | |
| import json | |
| import os | |
| import posixpath | |
| from dataclasses import dataclass | |
| from pathlib import Path | |
| from typing import ClassVar, Dict, List, Optional, Union | |
| import fsspec | |
| from fsspec.core import url_to_fs | |
| from huggingface_hub import DatasetCard, DatasetCardData | |
| from . import config | |
| from .features import Features | |
| from .splits import SplitDict | |
| from .utils import Version | |
| from .utils.logging import get_logger | |
| from .utils.py_utils import asdict, unique_values | |
| logger = get_logger(__name__) | |
| class SupervisedKeysData: | |
| input: str = "" | |
| output: str = "" | |
| class DownloadChecksumsEntryData: | |
| key: str = "" | |
| value: str = "" | |
| class MissingCachedSizesConfigError(Exception): | |
| """The expected cached sizes of the download file are missing.""" | |
| class NonMatchingCachedSizesError(Exception): | |
| """The prepared split doesn't have expected sizes.""" | |
| class PostProcessedInfo: | |
| features: Optional[Features] = None | |
| resources_checksums: Optional[dict] = None | |
| def __post_init__(self): | |
| # Convert back to the correct classes when we reload from dict | |
| if self.features is not None and not isinstance(self.features, Features): | |
| self.features = Features.from_dict(self.features) | |
| def from_dict(cls, post_processed_info_dict: dict) -> "PostProcessedInfo": | |
| field_names = {f.name for f in dataclasses.fields(cls)} | |
| return cls(**{k: v for k, v in post_processed_info_dict.items() if k in field_names}) | |
| class DatasetInfo: | |
| """Information about a dataset. | |
| `DatasetInfo` documents datasets, including its name, version, and features. | |
| See the constructor arguments and properties for a full list. | |
| Not all fields are known on construction and may be updated later. | |
| Attributes: | |
| description (`str`): | |
| A description of the dataset. | |
| citation (`str`): | |
| A BibTeX citation of the dataset. | |
| homepage (`str`): | |
| A URL to the official homepage for the dataset. | |
| license (`str`): | |
| The dataset's license. It can be the name of the license or a paragraph containing the terms of the license. | |
| features ([`Features`], *optional*): | |
| The features used to specify the dataset's column types. | |
| post_processed (`PostProcessedInfo`, *optional*): | |
| Information regarding the resources of a possible post-processing of a dataset. For example, it can contain the information of an index. | |
| supervised_keys (`SupervisedKeysData`, *optional*): | |
| Specifies the input feature and the label for supervised learning if applicable for the dataset (legacy from TFDS). | |
| builder_name (`str`, *optional*): | |
| The name of the `GeneratorBasedBuilder` subclass used to create the dataset. Usually matched to the corresponding script name. It is also the snake_case version of the dataset builder class name. | |
| config_name (`str`, *optional*): | |
| The name of the configuration derived from [`BuilderConfig`]. | |
| version (`str` or [`Version`], *optional*): | |
| The version of the dataset. | |
| splits (`dict`, *optional*): | |
| The mapping between split name and metadata. | |
| download_checksums (`dict`, *optional*): | |
| The mapping between the URL to download the dataset's checksums and corresponding metadata. | |
| download_size (`int`, *optional*): | |
| The size of the files to download to generate the dataset, in bytes. | |
| post_processing_size (`int`, *optional*): | |
| Size of the dataset in bytes after post-processing, if any. | |
| dataset_size (`int`, *optional*): | |
| The combined size in bytes of the Arrow tables for all splits. | |
| size_in_bytes (`int`, *optional*): | |
| The combined size in bytes of all files associated with the dataset (downloaded files + Arrow files). | |
| **config_kwargs (additional keyword arguments): | |
| Keyword arguments to be passed to the [`BuilderConfig`] and used in the [`DatasetBuilder`]. | |
| """ | |
| # Set in the dataset scripts | |
| description: str = dataclasses.field(default_factory=str) | |
| citation: str = dataclasses.field(default_factory=str) | |
| homepage: str = dataclasses.field(default_factory=str) | |
| license: str = dataclasses.field(default_factory=str) | |
| features: Optional[Features] = None | |
| post_processed: Optional[PostProcessedInfo] = None | |
| supervised_keys: Optional[SupervisedKeysData] = None | |
| # Set later by the builder | |
| builder_name: Optional[str] = None | |
| dataset_name: Optional[str] = None # for packaged builders, to be different from builder_name | |
| config_name: Optional[str] = None | |
| version: Optional[Union[str, Version]] = None | |
| # Set later by `download_and_prepare` | |
| splits: Optional[dict] = None | |
| download_checksums: Optional[dict] = None | |
| download_size: Optional[int] = None | |
| post_processing_size: Optional[int] = None | |
| dataset_size: Optional[int] = None | |
| size_in_bytes: Optional[int] = None | |
| _INCLUDED_INFO_IN_YAML: ClassVar[List[str]] = [ | |
| "config_name", | |
| "download_size", | |
| "dataset_size", | |
| "features", | |
| "splits", | |
| ] | |
| def __post_init__(self): | |
| # Convert back to the correct classes when we reload from dict | |
| if self.features is not None and not isinstance(self.features, Features): | |
| self.features = Features.from_dict(self.features) | |
| if self.post_processed is not None and not isinstance(self.post_processed, PostProcessedInfo): | |
| self.post_processed = PostProcessedInfo.from_dict(self.post_processed) | |
| if self.version is not None and not isinstance(self.version, Version): | |
| if isinstance(self.version, str): | |
| self.version = Version(self.version) | |
| else: | |
| self.version = Version.from_dict(self.version) | |
| if self.splits is not None and not isinstance(self.splits, SplitDict): | |
| self.splits = SplitDict.from_split_dict(self.splits) | |
| if self.supervised_keys is not None and not isinstance(self.supervised_keys, SupervisedKeysData): | |
| if isinstance(self.supervised_keys, (tuple, list)): | |
| self.supervised_keys = SupervisedKeysData(*self.supervised_keys) | |
| else: | |
| self.supervised_keys = SupervisedKeysData(**self.supervised_keys) | |
| def write_to_directory(self, dataset_info_dir, pretty_print=False, storage_options: Optional[dict] = None): | |
| """Write `DatasetInfo` and license (if present) as JSON files to `dataset_info_dir`. | |
| Args: | |
| dataset_info_dir (`str`): | |
| Destination directory. | |
| pretty_print (`bool`, defaults to `False`): | |
| If `True`, the JSON will be pretty-printed with the indent level of 4. | |
| storage_options (`dict`, *optional*): | |
| Key/value pairs to be passed on to the file-system backend, if any. | |
| <Added version="2.9.0"/> | |
| Example: | |
| ```py | |
| >>> from datasets import load_dataset | |
| >>> ds = load_dataset("rotten_tomatoes", split="validation") | |
| >>> ds.info.write_to_directory("/path/to/directory/") | |
| ``` | |
| """ | |
| fs: fsspec.AbstractFileSystem | |
| fs, *_ = url_to_fs(dataset_info_dir, **(storage_options or {})) | |
| with fs.open(posixpath.join(dataset_info_dir, config.DATASET_INFO_FILENAME), "wb") as f: | |
| self._dump_info(f, pretty_print=pretty_print) | |
| if self.license: | |
| with fs.open(posixpath.join(dataset_info_dir, config.LICENSE_FILENAME), "wb") as f: | |
| self._dump_license(f) | |
| def _dump_info(self, file, pretty_print=False): | |
| """Dump info in `file` file-like object open in bytes mode (to support remote files)""" | |
| file.write(json.dumps(asdict(self), indent=4 if pretty_print else None).encode("utf-8")) | |
| def _dump_license(self, file): | |
| """Dump license in `file` file-like object open in bytes mode (to support remote files)""" | |
| file.write(self.license.encode("utf-8")) | |
| def from_merge(cls, dataset_infos: List["DatasetInfo"]): | |
| dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None] | |
| if len(dataset_infos) > 0 and all(dataset_infos[0] == dset_info for dset_info in dataset_infos): | |
| # if all dataset_infos are equal we don't need to merge. Just return the first. | |
| return dataset_infos[0] | |
| description = "\n\n".join(unique_values(info.description for info in dataset_infos)).strip() | |
| citation = "\n\n".join(unique_values(info.citation for info in dataset_infos)).strip() | |
| homepage = "\n\n".join(unique_values(info.homepage for info in dataset_infos)).strip() | |
| license = "\n\n".join(unique_values(info.license for info in dataset_infos)).strip() | |
| features = None | |
| supervised_keys = None | |
| return cls( | |
| description=description, | |
| citation=citation, | |
| homepage=homepage, | |
| license=license, | |
| features=features, | |
| supervised_keys=supervised_keys, | |
| ) | |
| def from_directory(cls, dataset_info_dir: str, storage_options: Optional[dict] = None) -> "DatasetInfo": | |
| """Create [`DatasetInfo`] from the JSON file in `dataset_info_dir`. | |
| This function updates all the dynamically generated fields (num_examples, | |
| hash, time of creation,...) of the [`DatasetInfo`]. | |
| This will overwrite all previous metadata. | |
| Args: | |
| dataset_info_dir (`str`): | |
| The directory containing the metadata file. This | |
| should be the root directory of a specific dataset version. | |
| storage_options (`dict`, *optional*): | |
| Key/value pairs to be passed on to the file-system backend, if any. | |
| <Added version="2.9.0"/> | |
| Example: | |
| ```py | |
| >>> from datasets import DatasetInfo | |
| >>> ds_info = DatasetInfo.from_directory("/path/to/directory/") | |
| ``` | |
| """ | |
| fs: fsspec.AbstractFileSystem | |
| fs, *_ = url_to_fs(dataset_info_dir, **(storage_options or {})) | |
| logger.info(f"Loading Dataset info from {dataset_info_dir}") | |
| if not dataset_info_dir: | |
| raise ValueError("Calling DatasetInfo.from_directory() with undefined dataset_info_dir.") | |
| with fs.open(posixpath.join(dataset_info_dir, config.DATASET_INFO_FILENAME), "r", encoding="utf-8") as f: | |
| dataset_info_dict = json.load(f) | |
| return cls.from_dict(dataset_info_dict) | |
| def from_dict(cls, dataset_info_dict: dict) -> "DatasetInfo": | |
| field_names = {f.name for f in dataclasses.fields(cls)} | |
| return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) | |
| def update(self, other_dataset_info: "DatasetInfo", ignore_none=True): | |
| self_dict = self.__dict__ | |
| self_dict.update( | |
| **{ | |
| k: copy.deepcopy(v) | |
| for k, v in other_dataset_info.__dict__.items() | |
| if (v is not None or not ignore_none) | |
| } | |
| ) | |
| def copy(self) -> "DatasetInfo": | |
| return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) | |
| def _to_yaml_dict(self) -> dict: | |
| yaml_dict = {} | |
| dataset_info_dict = asdict(self) | |
| for key in dataset_info_dict: | |
| if key in self._INCLUDED_INFO_IN_YAML: | |
| value = getattr(self, key) | |
| if hasattr(value, "_to_yaml_list"): # Features, SplitDict | |
| yaml_dict[key] = value._to_yaml_list() | |
| elif hasattr(value, "_to_yaml_string"): # Version | |
| yaml_dict[key] = value._to_yaml_string() | |
| else: | |
| yaml_dict[key] = value | |
| return yaml_dict | |
| def _from_yaml_dict(cls, yaml_data: dict) -> "DatasetInfo": | |
| yaml_data = copy.deepcopy(yaml_data) | |
| if yaml_data.get("features") is not None: | |
| yaml_data["features"] = Features._from_yaml_list(yaml_data["features"]) | |
| if yaml_data.get("splits") is not None: | |
| yaml_data["splits"] = SplitDict._from_yaml_list(yaml_data["splits"]) | |
| field_names = {f.name for f in dataclasses.fields(cls)} | |
| return cls(**{k: v for k, v in yaml_data.items() if k in field_names}) | |
| class DatasetInfosDict(Dict[str, DatasetInfo]): | |
| def write_to_directory(self, dataset_infos_dir, overwrite=False, pretty_print=False) -> None: | |
| total_dataset_infos = {} | |
| dataset_infos_path = os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME) | |
| dataset_readme_path = os.path.join(dataset_infos_dir, config.REPOCARD_FILENAME) | |
| if not overwrite: | |
| total_dataset_infos = self.from_directory(dataset_infos_dir) | |
| total_dataset_infos.update(self) | |
| if os.path.exists(dataset_infos_path): | |
| # for backward compatibility, let's update the JSON file if it exists | |
| with open(dataset_infos_path, "w", encoding="utf-8") as f: | |
| dataset_infos_dict = { | |
| config_name: asdict(dset_info) for config_name, dset_info in total_dataset_infos.items() | |
| } | |
| json.dump(dataset_infos_dict, f, indent=4 if pretty_print else None) | |
| # Dump the infos in the YAML part of the README.md file | |
| if os.path.exists(dataset_readme_path): | |
| dataset_card = DatasetCard.load(dataset_readme_path) | |
| dataset_card_data = dataset_card.data | |
| else: | |
| dataset_card = None | |
| dataset_card_data = DatasetCardData() | |
| if total_dataset_infos: | |
| total_dataset_infos.to_dataset_card_data(dataset_card_data) | |
| dataset_card = ( | |
| DatasetCard("---\n" + str(dataset_card_data) + "\n---\n") if dataset_card is None else dataset_card | |
| ) | |
| dataset_card.save(Path(dataset_readme_path)) | |
| def from_directory(cls, dataset_infos_dir) -> "DatasetInfosDict": | |
| logger.info(f"Loading Dataset Infos from {dataset_infos_dir}") | |
| # Load the info from the YAML part of README.md | |
| if os.path.exists(os.path.join(dataset_infos_dir, config.REPOCARD_FILENAME)): | |
| dataset_card_data = DatasetCard.load(Path(dataset_infos_dir) / config.REPOCARD_FILENAME).data | |
| if "dataset_info" in dataset_card_data: | |
| return cls.from_dataset_card_data(dataset_card_data) | |
| if os.path.exists(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME)): | |
| # this is just to have backward compatibility with dataset_infos.json files | |
| with open(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f: | |
| return cls( | |
| { | |
| config_name: DatasetInfo.from_dict(dataset_info_dict) | |
| for config_name, dataset_info_dict in json.load(f).items() | |
| } | |
| ) | |
| else: | |
| return cls() | |
| def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "DatasetInfosDict": | |
| if isinstance(dataset_card_data.get("dataset_info"), (list, dict)): | |
| if isinstance(dataset_card_data["dataset_info"], list): | |
| return cls( | |
| { | |
| dataset_info_yaml_dict.get("config_name", "default"): DatasetInfo._from_yaml_dict( | |
| dataset_info_yaml_dict | |
| ) | |
| for dataset_info_yaml_dict in dataset_card_data["dataset_info"] | |
| } | |
| ) | |
| else: | |
| dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"]) | |
| dataset_info.config_name = dataset_card_data["dataset_info"].get("config_name", "default") | |
| return cls({dataset_info.config_name: dataset_info}) | |
| else: | |
| return cls() | |
| def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None: | |
| if self: | |
| # first get existing metadata info | |
| if "dataset_info" in dataset_card_data and isinstance(dataset_card_data["dataset_info"], dict): | |
| dataset_metadata_infos = { | |
| dataset_card_data["dataset_info"].get("config_name", "default"): dataset_card_data["dataset_info"] | |
| } | |
| elif "dataset_info" in dataset_card_data and isinstance(dataset_card_data["dataset_info"], list): | |
| dataset_metadata_infos = { | |
| config_metadata["config_name"]: config_metadata | |
| for config_metadata in dataset_card_data["dataset_info"] | |
| } | |
| else: | |
| dataset_metadata_infos = {} | |
| # update/rewrite existing metadata info with the one to dump | |
| total_dataset_infos = { | |
| **dataset_metadata_infos, | |
| **{config_name: dset_info._to_yaml_dict() for config_name, dset_info in self.items()}, | |
| } | |
| # the config_name from the dataset_infos_dict takes over the config_name of the DatasetInfo | |
| for config_name, dset_info_yaml_dict in total_dataset_infos.items(): | |
| dset_info_yaml_dict["config_name"] = config_name | |
| if len(total_dataset_infos) == 1: | |
| # use a struct instead of a list of configurations, since there's only one | |
| dataset_card_data["dataset_info"] = next(iter(total_dataset_infos.values())) | |
| config_name = dataset_card_data["dataset_info"].pop("config_name", None) | |
| if config_name != "default": | |
| # if config_name is not "default" preserve it and put at the first position | |
| dataset_card_data["dataset_info"] = { | |
| "config_name": config_name, | |
| **dataset_card_data["dataset_info"], | |
| } | |
| else: | |
| dataset_card_data["dataset_info"] = [] | |
| for config_name, dataset_info_yaml_dict in sorted(total_dataset_infos.items()): | |
| # add the config_name field in first position | |
| dataset_info_yaml_dict.pop("config_name", None) | |
| dataset_info_yaml_dict = {"config_name": config_name, **dataset_info_yaml_dict} | |
| dataset_card_data["dataset_info"].append(dataset_info_yaml_dict) | |