ordlibrary's picture
Upload folder using huggingface_hub
f1e6b80 verified
"""A chain for comparing the output of two models using embeddings."""
from enum import Enum
from typing import Any, Dict, List, Optional
import numpy as np
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
Callbacks,
)
from langchain_core.embeddings import Embeddings
from langchain_core.utils import pre_init
from pydantic import ConfigDict, Field
from langchain.chains.base import Chain
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
from langchain.schema import RUN_KEY
def _embedding_factory() -> Embeddings:
"""Create an Embeddings object.
Returns:
Embeddings: The created Embeddings object.
"""
# Here for backwards compatibility.
# Generally, we do not want to be seeing imports from langchain community
# or partner packages in langchain.
try:
from langchain_openai import OpenAIEmbeddings
except ImportError:
try:
from langchain_community.embeddings.openai import OpenAIEmbeddings
except ImportError:
raise ImportError(
"Could not import OpenAIEmbeddings. Please install the "
"OpenAIEmbeddings package using `pip install langchain-openai`."
)
return OpenAIEmbeddings()
class EmbeddingDistance(str, Enum):
"""Embedding Distance Metric.
Attributes:
COSINE: Cosine distance metric.
EUCLIDEAN: Euclidean distance metric.
MANHATTAN: Manhattan distance metric.
CHEBYSHEV: Chebyshev distance metric.
HAMMING: Hamming distance metric.
"""
COSINE = "cosine"
EUCLIDEAN = "euclidean"
MANHATTAN = "manhattan"
CHEBYSHEV = "chebyshev"
HAMMING = "hamming"
class _EmbeddingDistanceChainMixin(Chain):
"""Shared functionality for embedding distance evaluators.
Attributes:
embeddings (Embeddings): The embedding objects to vectorize the outputs.
distance_metric (EmbeddingDistance): The distance metric to use
for comparing the embeddings.
"""
embeddings: Embeddings = Field(default_factory=_embedding_factory)
distance_metric: EmbeddingDistance = Field(default=EmbeddingDistance.COSINE)
@pre_init
def _validate_tiktoken_installed(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate that the TikTok library is installed.
Args:
values (Dict[str, Any]): The values to validate.
Returns:
Dict[str, Any]: The validated values.
"""
embeddings = values.get("embeddings")
types_ = []
try:
from langchain_openai import OpenAIEmbeddings
types_.append(OpenAIEmbeddings)
except ImportError:
pass
try:
from langchain_community.embeddings.openai import OpenAIEmbeddings
types_.append(OpenAIEmbeddings)
except ImportError:
pass
if not types_:
raise ImportError(
"Could not import OpenAIEmbeddings. Please install the "
"OpenAIEmbeddings package using `pip install langchain-openai`."
)
if isinstance(embeddings, tuple(types_)):
try:
import tiktoken # noqa: F401
except ImportError:
raise ImportError(
"The tiktoken library is required to use the default "
"OpenAI embeddings with embedding distance evaluators."
" Please either manually select a different Embeddings object"
" or install tiktoken using `pip install tiktoken`."
)
return values
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
@property
def output_keys(self) -> List[str]:
"""Return the output keys of the chain.
Returns:
List[str]: The output keys.
"""
return ["score"]
def _prepare_output(self, result: dict) -> dict:
parsed = {"score": result["score"]}
if RUN_KEY in result:
parsed[RUN_KEY] = result[RUN_KEY]
return parsed
def _get_metric(self, metric: EmbeddingDistance) -> Any:
"""Get the metric function for the given metric name.
Args:
metric (EmbeddingDistance): The metric name.
Returns:
Any: The metric function.
"""
metrics = {
EmbeddingDistance.COSINE: self._cosine_distance,
EmbeddingDistance.EUCLIDEAN: self._euclidean_distance,
EmbeddingDistance.MANHATTAN: self._manhattan_distance,
EmbeddingDistance.CHEBYSHEV: self._chebyshev_distance,
EmbeddingDistance.HAMMING: self._hamming_distance,
}
if metric in metrics:
return metrics[metric]
else:
raise ValueError(f"Invalid metric: {metric}")
@staticmethod
def _cosine_distance(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""Compute the cosine distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.ndarray: The cosine distance.
"""
try:
from langchain_community.utils.math import cosine_similarity
except ImportError:
raise ImportError(
"The cosine_similarity function is required to compute cosine distance."
" Please install the langchain-community package using"
" `pip install langchain-community`."
)
return 1.0 - cosine_similarity(a, b)
@staticmethod
def _euclidean_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Euclidean distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Euclidean distance.
"""
return np.linalg.norm(a - b)
@staticmethod
def _manhattan_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Manhattan distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Manhattan distance.
"""
return np.sum(np.abs(a - b))
@staticmethod
def _chebyshev_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Chebyshev distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Chebyshev distance.
"""
return np.max(np.abs(a - b))
@staticmethod
def _hamming_distance(a: np.ndarray, b: np.ndarray) -> np.floating:
"""Compute the Hamming distance between two vectors.
Args:
a (np.ndarray): The first vector.
b (np.ndarray): The second vector.
Returns:
np.floating: The Hamming distance.
"""
return np.mean(a != b)
def _compute_score(self, vectors: np.ndarray) -> float:
"""Compute the score based on the distance metric.
Args:
vectors (np.ndarray): The input vectors.
Returns:
float: The computed score.
"""
metric = self._get_metric(self.distance_metric)
score = metric(vectors[0].reshape(1, -1), vectors[1].reshape(1, -1)).item()
return score
class EmbeddingDistanceEvalChain(_EmbeddingDistanceChainMixin, StringEvaluator):
"""Use embedding distances to score semantic difference between
a prediction and reference.
Examples:
>>> chain = EmbeddingDistanceEvalChain()
>>> result = chain.evaluate_strings(prediction="Hello", reference="Hi")
>>> print(result)
{'score': 0.5}
"""
@property
def requires_reference(self) -> bool:
"""Return whether the chain requires a reference.
Returns:
bool: True if a reference is required, False otherwise.
"""
return True
@property
def evaluation_name(self) -> str:
return f"embedding_{self.distance_metric.value}_distance"
@property
def input_keys(self) -> List[str]:
"""Return the input keys of the chain.
Returns:
List[str]: The input keys.
"""
return ["prediction", "reference"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Compute the score for a prediction and reference.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (Optional[CallbackManagerForChainRun], optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
vectors = np.array(
self.embeddings.embed_documents([inputs["prediction"], inputs["reference"]])
)
score = self._compute_score(vectors)
return {"score": score}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Asynchronously compute the score for a prediction and reference.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (AsyncCallbackManagerForChainRun, optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
embedded = await self.embeddings.aembed_documents(
[inputs["prediction"], inputs["reference"]]
)
vectors = np.array(embedded)
score = self._compute_score(vectors)
return {"score": score}
def _evaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate the embedding distance between a prediction and
reference.
Args:
prediction (str): The output string from the first model.
reference (str): The reference string (required)
callbacks (Callbacks, optional): The callbacks to use.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = self(
inputs={"prediction": prediction, "reference": reference},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_strings(
self,
*,
prediction: str,
reference: Optional[str] = None,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate the embedding distance between
a prediction and reference.
Args:
prediction (str): The output string from the first model.
reference (str): The output string from the second model.
callbacks (Callbacks, optional): The callbacks to use.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = await self.acall(
inputs={"prediction": prediction, "reference": reference},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
class PairwiseEmbeddingDistanceEvalChain(
_EmbeddingDistanceChainMixin, PairwiseStringEvaluator
):
"""Use embedding distances to score semantic difference between two predictions.
Examples:
>>> chain = PairwiseEmbeddingDistanceEvalChain()
>>> result = chain.evaluate_string_pairs(prediction="Hello", prediction_b="Hi")
>>> print(result)
{'score': 0.5}
"""
@property
def input_keys(self) -> List[str]:
"""Return the input keys of the chain.
Returns:
List[str]: The input keys.
"""
return ["prediction", "prediction_b"]
@property
def evaluation_name(self) -> str:
return f"pairwise_embedding_{self.distance_metric.value}_distance"
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Compute the score for two predictions.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (CallbackManagerForChainRun, optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
vectors = np.array(
self.embeddings.embed_documents(
[inputs["prediction"], inputs["prediction_b"]]
)
)
score = self._compute_score(vectors)
return {"score": score}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Asynchronously compute the score for two predictions.
Args:
inputs (Dict[str, Any]): The input data.
run_manager (AsyncCallbackManagerForChainRun, optional):
The callback manager.
Returns:
Dict[str, Any]: The computed score.
"""
embedded = await self.embeddings.aembed_documents(
[inputs["prediction"], inputs["prediction_b"]]
)
vectors = np.array(embedded)
score = self._compute_score(vectors)
return {"score": score}
def _evaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Evaluate the embedding distance between two predictions.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
callbacks (Callbacks, optional): The callbacks to use.
tags (List[str], optional): Tags to apply to traces
metadata (Dict[str, Any], optional): metadata to apply to
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = self(
inputs={"prediction": prediction, "prediction_b": prediction_b},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)
async def _aevaluate_string_pairs(
self,
*,
prediction: str,
prediction_b: str,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
include_run_info: bool = False,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate the embedding distance
between two predictions.
Args:
prediction (str): The output string from the first model.
prediction_b (str): The output string from the second model.
callbacks (Callbacks, optional): The callbacks to use.
tags (List[str], optional): Tags to apply to traces
metadata (Dict[str, Any], optional): metadata to apply to traces
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- score: The embedding distance between the two
predictions.
"""
result = await self.acall(
inputs={"prediction": prediction, "prediction_b": prediction_b},
callbacks=callbacks,
tags=tags,
metadata=metadata,
include_run_info=include_run_info,
)
return self._prepare_output(result)