orenk commited on
Commit
529f53f
·
1 Parent(s): e3d9bdf

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1400.57 +/- 347.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43b2c14b422e43d90829303c0529367a74682fb40c2cb9906caf8d09364ac858
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3587160280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3587160310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35871603a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3587160430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f35871604c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3587160550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35871605e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3587160670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3587160700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3587160790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3587160820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35871608b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3587159ba0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674723104093501540,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFdozT283Kg/UzfxvMU1iD8DrkE/BxrbPjYrJj+P5yW/YPMHP3z/4D/crYg/6OCiPphNkz7jGPu+0f1OPnL27r/UbEQ/3Lsgvpv2+z4P6XU/cBURPIw1EED9nJ++cjIiwCHVk78+d9Q+p7oDP1SAi79fywc+iKgKPhmYGD9ZQNM+8Xc5P3UjqD1Td6i/EYZHP3rkbD9w2Z68GYlQv7ZUIz/2F0m/7a1bP6AgxD6u6dW/agEqvzBsOT5u6qK/6pvSP4+kKT91XbK/sQB2v2Z21j79p10/PnfUPqe6Az9UgIu/j9H4Pg3Odj8u0Js+T7CgP9MFhT9eRJg+VGypPznwsr++9kM+nstjP9QbO73aoBpAibVyP7uiAj7EMAg/Clf2vqp0oj9Syu++vYU1P7inFD9+YvG+r/jcPegZlz6vzZa/IdWTvz531D6nugM/VICLv1BGBz2WlQ5A7RIPwDlVij7AkY8/+vV/PxggSD4iaqS/GDdtP+EcYL2+NWA/loTEPqGlEb9I9aS/PVnVPjyu+L9g/kM/+jtSv+YlAD84hRk/T0+bvib3tT5uyGu/UzUtwCHVk78+d9Q+p7oDP1SAi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+Uhy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAS2KfuwAAAAAQxPq/AAAAAHrQy70AAAAACCsAQAAAAAAeVOm9AAAAAEE/2z8AAAAA0D/ovQAAAAAJreO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfNB8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB3GED4AAAAAVs7jvwAAAAAMudM9AAAAAE+K5z8AAAAAZ+XHvAAAAABWX+w/AAAAADC+wr0AAAAADC/mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/BIDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICiNQ2+AAAAAIbK278AAAAAj/7avAAAAAA5cdw/AAAAACTWLrwAAAAAvv3zPwAAAAANzcY7AAAAAFeD4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRWx02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAewuaPAAAAACYHOW/AAAAAHSx0L0AAAAApabdPwAAAAAdvAA+AAAAAA5x2T8AAAAA/7zRvQAAAAAq//i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfD75BTn7qMAWyUTegDjAF0lEdAq25QZjx0+3V9lChoBkdAmVH4d6sySGgHTegDaAhHQKtvoF6Avtd1fZQoaAZHQJ1GulabF0hoB03oA2gIR0CreLCxNZeSdX2UKGgGR0CXySe/Ho5haAdN6ANoCEdAq3oj2alUInV9lChoBkdAnkPOy7f512gHTegDaAhHQKt7j6Y3Ns51fZQoaAZHQKAkwMLF4s5oB03oA2gIR0CrfMK5CngpdX2UKGgGR0CYfa4+KTB7aAdN6ANoCEdAq4WZAfMfR3V9lChoBkdAnMav0yxiX2gHTegDaAhHQKuHAoTfzjF1fZQoaAZHQIl/UwrUb1hoB03oA2gIR0CriEXjdYW+dX2UKGgGR0CfZ4w9q1w6aAdN6ANoCEdAq4l17hNucnV9lChoBkdAnHz98zAN5WgHTegDaAhHQKuSPoTwlSl1fZQoaAZHQJ8nLtOVPepoB03oA2gIR0Crk6MPrfLtdX2UKGgGR0CgEe/LkjoqaAdN6ANoCEdAq5Tf5DZ13nV9lChoBkdAmFcrcoH9nGgHTegDaAhHQKuWDT/hl191fZQoaAZHQJJ46COFQEZoB03oA2gIR0CrntV6eGwidX2UKGgGR0CQP45IpYs/aAdN6ANoCEdAq6BN6Rhc7nV9lChoBkdAmdb6cZtNz2gHTegDaAhHQKuhlSP2f051fZQoaAZHQJUMI9FF2FFoB03oA2gIR0CrotvGZNO/dX2UKGgGR0CXyPibUgB+aAdN6ANoCEdAq6wKKLsKLXV9lChoBkdAmhFRGpda+2gHTegDaAhHQKuthh60IC51fZQoaAZHQJwMcWcjJMhoB03oA2gIR0CrrtF8gIQfdX2UKGgGR0CZALEdvKlpaAdN6ANoCEdAq7AGBFuvU3V9lChoBkdAk9vke6qbSmgHTegDaAhHQKu48KFZgXx1fZQoaAZHQJLtLHq/ub9oB03oA2gIR0CrulnIZIhAdX2UKGgGR0CgezNqgyuZaAdN6ANoCEdAq7uVedCmdnV9lChoBkdAnFG4Qz1scmgHTegDaAhHQKu8zRYzSCx1fZQoaAZHQJ+jR3yI55toB03oA2gIR0CrxaBRhttRdX2UKGgGR0CZGjjrzGxVaAdN6ANoCEdAq8cB7TlT33V9lChoBkdAnIVh5gPVeGgHTegDaAhHQKvIPW3BpHt1fZQoaAZHQKEl4dQO4G5oB03oA2gIR0CryXy75Ec9dX2UKGgGR0Ccucvi97F9aAdN6ANoCEdAq9LGMERranV9lChoBkdAn57c2itaIWgHTegDaAhHQKvUN6X0Gu91fZQoaAZHQJ5rkEr5IpZoB03oA2gIR0Cr1YCed07sdX2UKGgGR0CeT3+1SflIaAdN6ANoCEdAq9axhz/6wnV9lChoBkdAnXCcDGLk0mgHTegDaAhHQKvfkikfs/p1fZQoaAZHQJ132VC5VfhoB03oA2gIR0Cr4PpAt4A0dX2UKGgGR0ChbAg9/z8QaAdN6ANoCEdAq+JGBUaQ3nV9lChoBkdAnQARjOLR8mgHTegDaAhHQKvjfo5ggHN1fZQoaAZHQJwFog/1QIloB03oA2gIR0Cr7MeGO+7EdX2UKGgGR0CZfUuUD+zdaAdN6ANoCEdAq+4utjkMkXV9lChoBkdAnqS+2d/ax2gHTegDaAhHQKvvc6iCaql1fZQoaAZHQJ7vnmgam41oB03oA2gIR0Cr8K5W7voedX2UKGgGR0CaOEt3wCr+aAdN6ANoCEdAq/vzySV4YHV9lChoBkdAndR8uBczImgHTegDaAhHQKv+WRkmQbN1fZQoaAZHQJrlqrOqvNhoB03oA2gIR0CsAKqPwNLEdX2UKGgGR0Ce2HYraufVaAdN6ANoCEdArAKqgM+eOHV9lChoBkdAoNFAUDdP+GgHTegDaAhHQKwO7dX1ant1fZQoaAZHQJq7Y/QjUutoB03oA2gIR0CsEE/+jua4dX2UKGgGR0Ce6zXOnl4kaAdN6ANoCEdArBGSIi1RcnV9lChoBkdAoCSEIJJGv2gHTegDaAhHQKwSvLWZqmF1fZQoaAZHQI5V7fBN21VoB03oA2gIR0CsG7T6rNnodX2UKGgGR0CgkVlId2gWaAdN6ANoCEdArB0uEdvKl3V9lChoBkdAne2t2ovSMWgHTegDaAhHQKwecGFi8Wd1fZQoaAZHQKAPi/+sHSpoB03oA2gIR0CsH7n9WIXTdX2UKGgGR0CeO/7SRbKSaAdN6ANoCEdArCjZlg+hXnV9lChoBkdAoAi0qWkadmgHTegDaAhHQKwqSyCWeH11fZQoaAZHQJ0ZIPnSv1VoB03oA2gIR0CsK4yg5BC2dX2UKGgGR0Cd7v6fJ3gUaAdN6ANoCEdArCzBmseXA3V9lChoBkdAk5iA2l2vCGgHTegDaAhHQKw1zKcurZJ1fZQoaAZHQJx44Lc9GI9oB03oA2gIR0CsN4MSsbNsdX2UKGgGR0CTSiW8AaNuaAdN6ANoCEdArDjTPfKp1nV9lChoBkdAlgF0wztTk2gHTegDaAhHQKw6FINmUW51fZQoaAZHQJ+DLFS88LdoB03oA2gIR0CsQuJda+vhdX2UKGgGR0CcLpXZXdTHaAdN6ANoCEdArERMIgNgB3V9lChoBkdAnMzwX/HYH2gHTegDaAhHQKxFgUQCjlB1fZQoaAZHQJxtcFOfukVoB03oA2gIR0CsRszqSowVdX2UKGgGR0CY8V6eoUBXaAdN6ANoCEdArFAE7KaG6HV9lChoBkdAnCEfwd8zAWgHTegDaAhHQKxRaZx7zCl1fZQoaAZHQJZAaDzyz5ZoB03oA2gIR0CsUq7iIciodX2UKGgGR0CXhQiXY150aAdN6ANoCEdArFPnAVO9FnV9lChoBkdAmHcE/nnuA2gHTegDaAhHQKxdF7k4m1J1fZQoaAZHQJW+cZ62OQ1oB03oA2gIR0CsXpIIfKZEdX2UKGgGR0CYKsXf642CaAdN6ANoCEdArGAOipNsWXV9lChoBkdAmNbrjT8YRGgHTegDaAhHQKxhb6C17Y11fZQoaAZHQJGwqPvKEFpoB03oA2gIR0CsaksTnJT3dX2UKGgGR0CdSPfNRm9QaAdN6ANoCEdArGu0RzzVc3V9lChoBkdAmJMmaMJhOWgHTegDaAhHQKxs/6VMVUN1fZQoaAZHQJxF5OerdWRoB03oA2gIR0CsbjOVX3g2dX2UKGgGR0CaoXf4AS39aAdN6ANoCEdArHeg0bcXWXV9lChoBkdAmRbyJXQtz2gHTegDaAhHQKx5DN9H+ZR1fZQoaAZHQJcWSNkvsZ5oB03oA2gIR0CselJQLux9dX2UKGgGR0CR1kQcghbGaAdN6ANoCEdArHuKBK+SKXV9lChoBkdAnW6I9kjHGWgHTegDaAhHQKyEXaxHG0h1fZQoaAZHQJhUS5wwTM9oB03oA2gIR0CshdCJwbVCdX2UKGgGR0CekRTnaFmGaAdN6ANoCEdArIcIYpDu0HV9lChoBkdAnhMIvvjOs2gHTegDaAhHQKyIN63y7PJ1fZQoaAZHQJ2K4XN1QqJoB03oA2gIR0CskcgeRxLkdX2UKGgGR0CbBmvXbuc+aAdN6ANoCEdArJNAsiB5HHV9lChoBkdAnG7FSbYsd2gHTegDaAhHQKyUiy8jAzp1fZQoaAZHQJ7VXOIInjRoB03oA2gIR0CslcMFdLQHdX2UKGgGR0CbgMbjtG/faAdN6ANoCEdArJ8SnivPknV9lChoBkdAnhBDhP0qY2gHTegDaAhHQKygeNwR5C51fZQoaAZHQJvpqVmjCYVoB03oA2gIR0CsobdGiHqNdX2UKGgGR0CfCZ1aW5YpaAdN6ANoCEdArKLvzjFQ23V9lChoBkdAm6WFXV9WqGgHTegDaAhHQKyr1Mj/uLJ1fZQoaAZHQJunWcTakARoB03oA2gIR0CsrUQuEmICdX2UKGgGR0CY1rzFMqSYaAdN6ANoCEdArK6QaNuLrHV9lChoBkdAl516oIfKZGgHTegDaAhHQKyvvQuVX3h1fZQoaAZHQJkc7101ZT1oB03oA2gIR0CsuVhRyfcvdX2UKGgGR0CYeii/fwZwaAdN6ANoCEdArLrJFy7wrnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4220964fa193f39fcb008243928b6b0e95d4dca1aa0266aec6527cd782e6ae38
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03302e4e8e34a2faea94f8749eace924755e19fbb8d8f3801e34a92e28c679b3
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3587160280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3587160310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35871603a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3587160430>", "_build": "<function ActorCriticPolicy._build at 0x7f35871604c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3587160550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35871605e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3587160670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3587160700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3587160790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3587160820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35871608b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3587159ba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674723104093501540, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFdozT283Kg/UzfxvMU1iD8DrkE/BxrbPjYrJj+P5yW/YPMHP3z/4D/crYg/6OCiPphNkz7jGPu+0f1OPnL27r/UbEQ/3Lsgvpv2+z4P6XU/cBURPIw1EED9nJ++cjIiwCHVk78+d9Q+p7oDP1SAi79fywc+iKgKPhmYGD9ZQNM+8Xc5P3UjqD1Td6i/EYZHP3rkbD9w2Z68GYlQv7ZUIz/2F0m/7a1bP6AgxD6u6dW/agEqvzBsOT5u6qK/6pvSP4+kKT91XbK/sQB2v2Z21j79p10/PnfUPqe6Az9UgIu/j9H4Pg3Odj8u0Js+T7CgP9MFhT9eRJg+VGypPznwsr++9kM+nstjP9QbO73aoBpAibVyP7uiAj7EMAg/Clf2vqp0oj9Syu++vYU1P7inFD9+YvG+r/jcPegZlz6vzZa/IdWTvz531D6nugM/VICLv1BGBz2WlQ5A7RIPwDlVij7AkY8/+vV/PxggSD4iaqS/GDdtP+EcYL2+NWA/loTEPqGlEb9I9aS/PVnVPjyu+L9g/kM/+jtSv+YlAD84hRk/T0+bvib3tT5uyGu/UzUtwCHVk78+d9Q+p7oDP1SAi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+Uhy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAS2KfuwAAAAAQxPq/AAAAAHrQy70AAAAACCsAQAAAAAAeVOm9AAAAAEE/2z8AAAAA0D/ovQAAAAAJreO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfNB8NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB3GED4AAAAAVs7jvwAAAAAMudM9AAAAAE+K5z8AAAAAZ+XHvAAAAABWX+w/AAAAADC+wr0AAAAADC/mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/BIDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICiNQ2+AAAAAIbK278AAAAAj/7avAAAAAA5cdw/AAAAACTWLrwAAAAAvv3zPwAAAAANzcY7AAAAAFeD4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRWx02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAewuaPAAAAACYHOW/AAAAAHSx0L0AAAAApabdPwAAAAAdvAA+AAAAAA5x2T8AAAAA/7zRvQAAAAAq//i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfD75BTn7qMAWyUTegDjAF0lEdAq25QZjx0+3V9lChoBkdAmVH4d6sySGgHTegDaAhHQKtvoF6Avtd1fZQoaAZHQJ1GulabF0hoB03oA2gIR0CreLCxNZeSdX2UKGgGR0CXySe/Ho5haAdN6ANoCEdAq3oj2alUInV9lChoBkdAnkPOy7f512gHTegDaAhHQKt7j6Y3Ns51fZQoaAZHQKAkwMLF4s5oB03oA2gIR0CrfMK5CngpdX2UKGgGR0CYfa4+KTB7aAdN6ANoCEdAq4WZAfMfR3V9lChoBkdAnMav0yxiX2gHTegDaAhHQKuHAoTfzjF1fZQoaAZHQIl/UwrUb1hoB03oA2gIR0CriEXjdYW+dX2UKGgGR0CfZ4w9q1w6aAdN6ANoCEdAq4l17hNucnV9lChoBkdAnHz98zAN5WgHTegDaAhHQKuSPoTwlSl1fZQoaAZHQJ8nLtOVPepoB03oA2gIR0Crk6MPrfLtdX2UKGgGR0CgEe/LkjoqaAdN6ANoCEdAq5Tf5DZ13nV9lChoBkdAmFcrcoH9nGgHTegDaAhHQKuWDT/hl191fZQoaAZHQJJ46COFQEZoB03oA2gIR0CrntV6eGwidX2UKGgGR0CQP45IpYs/aAdN6ANoCEdAq6BN6Rhc7nV9lChoBkdAmdb6cZtNz2gHTegDaAhHQKuhlSP2f051fZQoaAZHQJUMI9FF2FFoB03oA2gIR0CrotvGZNO/dX2UKGgGR0CXyPibUgB+aAdN6ANoCEdAq6wKKLsKLXV9lChoBkdAmhFRGpda+2gHTegDaAhHQKuthh60IC51fZQoaAZHQJwMcWcjJMhoB03oA2gIR0CrrtF8gIQfdX2UKGgGR0CZALEdvKlpaAdN6ANoCEdAq7AGBFuvU3V9lChoBkdAk9vke6qbSmgHTegDaAhHQKu48KFZgXx1fZQoaAZHQJLtLHq/ub9oB03oA2gIR0CrulnIZIhAdX2UKGgGR0CgezNqgyuZaAdN6ANoCEdAq7uVedCmdnV9lChoBkdAnFG4Qz1scmgHTegDaAhHQKu8zRYzSCx1fZQoaAZHQJ+jR3yI55toB03oA2gIR0CrxaBRhttRdX2UKGgGR0CZGjjrzGxVaAdN6ANoCEdAq8cB7TlT33V9lChoBkdAnIVh5gPVeGgHTegDaAhHQKvIPW3BpHt1fZQoaAZHQKEl4dQO4G5oB03oA2gIR0CryXy75Ec9dX2UKGgGR0Ccucvi97F9aAdN6ANoCEdAq9LGMERranV9lChoBkdAn57c2itaIWgHTegDaAhHQKvUN6X0Gu91fZQoaAZHQJ5rkEr5IpZoB03oA2gIR0Cr1YCed07sdX2UKGgGR0CeT3+1SflIaAdN6ANoCEdAq9axhz/6wnV9lChoBkdAnXCcDGLk0mgHTegDaAhHQKvfkikfs/p1fZQoaAZHQJ132VC5VfhoB03oA2gIR0Cr4PpAt4A0dX2UKGgGR0ChbAg9/z8QaAdN6ANoCEdAq+JGBUaQ3nV9lChoBkdAnQARjOLR8mgHTegDaAhHQKvjfo5ggHN1fZQoaAZHQJwFog/1QIloB03oA2gIR0Cr7MeGO+7EdX2UKGgGR0CZfUuUD+zdaAdN6ANoCEdAq+4utjkMkXV9lChoBkdAnqS+2d/ax2gHTegDaAhHQKvvc6iCaql1fZQoaAZHQJ7vnmgam41oB03oA2gIR0Cr8K5W7voedX2UKGgGR0CaOEt3wCr+aAdN6ANoCEdAq/vzySV4YHV9lChoBkdAndR8uBczImgHTegDaAhHQKv+WRkmQbN1fZQoaAZHQJrlqrOqvNhoB03oA2gIR0CsAKqPwNLEdX2UKGgGR0Ce2HYraufVaAdN6ANoCEdArAKqgM+eOHV9lChoBkdAoNFAUDdP+GgHTegDaAhHQKwO7dX1ant1fZQoaAZHQJq7Y/QjUutoB03oA2gIR0CsEE/+jua4dX2UKGgGR0Ce6zXOnl4kaAdN6ANoCEdArBGSIi1RcnV9lChoBkdAoCSEIJJGv2gHTegDaAhHQKwSvLWZqmF1fZQoaAZHQI5V7fBN21VoB03oA2gIR0CsG7T6rNnodX2UKGgGR0CgkVlId2gWaAdN6ANoCEdArB0uEdvKl3V9lChoBkdAne2t2ovSMWgHTegDaAhHQKwecGFi8Wd1fZQoaAZHQKAPi/+sHSpoB03oA2gIR0CsH7n9WIXTdX2UKGgGR0CeO/7SRbKSaAdN6ANoCEdArCjZlg+hXnV9lChoBkdAoAi0qWkadmgHTegDaAhHQKwqSyCWeH11fZQoaAZHQJ0ZIPnSv1VoB03oA2gIR0CsK4yg5BC2dX2UKGgGR0Cd7v6fJ3gUaAdN6ANoCEdArCzBmseXA3V9lChoBkdAk5iA2l2vCGgHTegDaAhHQKw1zKcurZJ1fZQoaAZHQJx44Lc9GI9oB03oA2gIR0CsN4MSsbNsdX2UKGgGR0CTSiW8AaNuaAdN6ANoCEdArDjTPfKp1nV9lChoBkdAlgF0wztTk2gHTegDaAhHQKw6FINmUW51fZQoaAZHQJ+DLFS88LdoB03oA2gIR0CsQuJda+vhdX2UKGgGR0CcLpXZXdTHaAdN6ANoCEdArERMIgNgB3V9lChoBkdAnMzwX/HYH2gHTegDaAhHQKxFgUQCjlB1fZQoaAZHQJxtcFOfukVoB03oA2gIR0CsRszqSowVdX2UKGgGR0CY8V6eoUBXaAdN6ANoCEdArFAE7KaG6HV9lChoBkdAnCEfwd8zAWgHTegDaAhHQKxRaZx7zCl1fZQoaAZHQJZAaDzyz5ZoB03oA2gIR0CsUq7iIciodX2UKGgGR0CXhQiXY150aAdN6ANoCEdArFPnAVO9FnV9lChoBkdAmHcE/nnuA2gHTegDaAhHQKxdF7k4m1J1fZQoaAZHQJW+cZ62OQ1oB03oA2gIR0CsXpIIfKZEdX2UKGgGR0CYKsXf642CaAdN6ANoCEdArGAOipNsWXV9lChoBkdAmNbrjT8YRGgHTegDaAhHQKxhb6C17Y11fZQoaAZHQJGwqPvKEFpoB03oA2gIR0CsaksTnJT3dX2UKGgGR0CdSPfNRm9QaAdN6ANoCEdArGu0RzzVc3V9lChoBkdAmJMmaMJhOWgHTegDaAhHQKxs/6VMVUN1fZQoaAZHQJxF5OerdWRoB03oA2gIR0CsbjOVX3g2dX2UKGgGR0CaoXf4AS39aAdN6ANoCEdArHeg0bcXWXV9lChoBkdAmRbyJXQtz2gHTegDaAhHQKx5DN9H+ZR1fZQoaAZHQJcWSNkvsZ5oB03oA2gIR0CselJQLux9dX2UKGgGR0CR1kQcghbGaAdN6ANoCEdArHuKBK+SKXV9lChoBkdAnW6I9kjHGWgHTegDaAhHQKyEXaxHG0h1fZQoaAZHQJhUS5wwTM9oB03oA2gIR0CshdCJwbVCdX2UKGgGR0CekRTnaFmGaAdN6ANoCEdArIcIYpDu0HV9lChoBkdAnhMIvvjOs2gHTegDaAhHQKyIN63y7PJ1fZQoaAZHQJ2K4XN1QqJoB03oA2gIR0CskcgeRxLkdX2UKGgGR0CbBmvXbuc+aAdN6ANoCEdArJNAsiB5HHV9lChoBkdAnG7FSbYsd2gHTegDaAhHQKyUiy8jAzp1fZQoaAZHQJ7VXOIInjRoB03oA2gIR0CslcMFdLQHdX2UKGgGR0CbgMbjtG/faAdN6ANoCEdArJ8SnivPknV9lChoBkdAnhBDhP0qY2gHTegDaAhHQKygeNwR5C51fZQoaAZHQJvpqVmjCYVoB03oA2gIR0CsobdGiHqNdX2UKGgGR0CfCZ1aW5YpaAdN6ANoCEdArKLvzjFQ23V9lChoBkdAm6WFXV9WqGgHTegDaAhHQKyr1Mj/uLJ1fZQoaAZHQJunWcTakARoB03oA2gIR0CsrUQuEmICdX2UKGgGR0CY1rzFMqSYaAdN6ANoCEdArK6QaNuLrHV9lChoBkdAl516oIfKZGgHTegDaAhHQKyvvQuVX3h1fZQoaAZHQJkc7101ZT1oB03oA2gIR0CsuVhRyfcvdX2UKGgGR0CYeii/fwZwaAdN6ANoCEdArLrJFy7wrnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e35be4b07ccc3964cd24878097d667b3ec006ff8ec3cc719f894f585561645a0
3
+ size 1128502
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1400.5701991825656, "std_reward": 347.6396463295018, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T09:49:19.968153"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:986270d7dca914d062137d3e2739dfae8f0d3fca9bcc1f851799304cad4b36c4
3
+ size 2136