File size: 5,077 Bytes
81b9a58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import re
from collections import defaultdict
from operator import itemgetter
from pathlib import Path
from re import Pattern
from typing import Optional, Callable, Iterable, Dict, Tuple
from spacy.lang.hu import Hungarian
from spacy.language import Language
from spacy.lookups import Lookups, Table
from spacy.pipeline import Pipe
from spacy.pipeline.lemmatizer import lemmatizer_score
from spacy.tokens import Token
from spacy.tokens.doc import Doc
# noinspection PyUnresolvedReferences
from spacy.training.example import Example
from spacy.util import ensure_path
class LookupLemmatizer(Pipe):
"""
LookupLemmatizer learn `(token, pos, morph. feat) -> lemma` mappings during training, and applies them at prediction
time.
"""
_number_pattern: Pattern = re.compile(r"\d")
# noinspection PyUnusedLocal
@staticmethod
@Hungarian.factory(
"lookup_lemmatizer",
assigns=["token.lemma"],
requires=["token.pos"],
default_config={"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"}, "source": ""},
)
def create(nlp: Language, name: str, scorer: Optional[Callable], source: str) -> "LookupLemmatizer":
return LookupLemmatizer(None, source, scorer)
def train(self, sentences: Iterable[Iterable[Tuple[str, str, str, str]]], min_occurrences: int = 1) -> None:
"""
Args:
sentences (Iterable[Iterable[Tuple[str, str, str, str]]]): Sentences to learn the mappings from
min_occurrences (int): mapping occurring less than this threshold are not learned
"""
# Lookup table which maps (upos, form) to (lemma -> frequency),
# e.g. `{ ("NOUN", "alma"): { "alma" : 99, "alom": 1} }`
lemma_lookup_table: Dict[Tuple[str, str], Dict[str, int]] = defaultdict(lambda: defaultdict(int))
for sentence in sentences:
for token, pos, feats, lemma in sentence:
token = self.__mask_numbers(token)
lemma = self.__mask_numbers(lemma)
feats_str = ("|" + feats) if feats else ""
key = (token, pos + feats_str)
lemma_lookup_table[key][lemma] += 1
lemma_lookup_table = dict(lemma_lookup_table)
self._lookups = Lookups()
table = Table(name="lemma_lookups")
lemma_freq: Dict[str, int]
for (form, pos), lemma_freq in dict(lemma_lookup_table).items():
most_freq_lemma, freq = sorted(lemma_freq.items(), key=itemgetter(1), reverse=True)[0]
if freq >= min_occurrences:
if form not in table:
# lemma by pos
table[form]: Dict[str, str] = dict()
table[form][pos] = most_freq_lemma
self._lookups.set_table(name=f"lemma_lookups", table=table)
def __init__(
self,
lookups: Optional[Lookups] = None,
source: Optional[str] = None,
scorer: Optional[Callable] = lemmatizer_score,
):
self._lookups: Optional[Lookups] = lookups
self.scorer = scorer
self.source = source
def __call__(self, doc: Doc) -> Doc:
assert self._lookups is not None, "Lookup table should be initialized first"
token: Token
for token in doc:
lemma_lookup_table = self._lookups.get_table(f"lemma_lookups")
masked_token = self.__mask_numbers(token.text)
if masked_token in lemma_lookup_table:
lemma_by_pos: Dict[str, str] = lemma_lookup_table[masked_token]
feats_str = ("|" + str(token.morph)) if str(token.morph) else ""
key = token.pos_ + feats_str
if key in lemma_by_pos:
if masked_token != token.text:
# If the token contains numbers, we need to replace the numbers in the lemma as well
token.lemma_ = self.__replace_numbers(lemma_by_pos[key], token.text)
pass
else:
token.lemma_ = lemma_by_pos[key]
return doc
# noinspection PyUnusedLocal
def to_disk(self, path, exclude=tuple()):
assert self._lookups is not None, "Lookup table should be initialized first"
path: Path = ensure_path(path)
path.mkdir(exist_ok=True)
self._lookups.to_disk(path)
# noinspection PyUnusedLocal
def from_disk(self, path, exclude=tuple()) -> "LookupLemmatizer":
path: Path = ensure_path(path)
lookups = Lookups()
self._lookups = lookups.from_disk(path=path)
return self
def initialize(self, get_examples: Callable[[], Iterable[Example]], *, nlp: Language = None) -> None:
lookups = Lookups()
self._lookups = lookups.from_disk(path=self.source)
@classmethod
def __mask_numbers(cls, token: str) -> str:
return cls._number_pattern.sub("0", token)
@classmethod
def __replace_numbers(cls, lemma: str, token: str) -> str:
return cls._number_pattern.sub(lambda match: token[match.start()], lemma)
|