osei1819 commited on
Commit
164f746
·
verified ·
1 Parent(s): 77737f8

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -9
README.md CHANGED
@@ -4,6 +4,11 @@ license: apache-2.0
4
  base_model: bert-base-uncased
5
  tags:
6
  - generated_from_trainer
 
 
 
 
 
7
  model-index:
8
  - name: phishing_detection_fine_tuned_bert
9
  results: []
@@ -16,7 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.4029
 
 
 
 
20
 
21
  ## Model description
22
 
@@ -42,17 +51,13 @@ The following hyperparameters were used during training:
42
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
  - lr_scheduler_type: linear
44
  - lr_scheduler_warmup_steps: 500
45
- - num_epochs: 5
46
 
47
  ### Training results
48
 
49
- | Training Loss | Epoch | Step | Validation Loss |
50
- |:-------------:|:-----:|:-----:|:---------------:|
51
- | 0.5508 | 1.0 | 3710 | 0.5307 |
52
- | 0.5149 | 2.0 | 7420 | 0.4215 |
53
- | 0.595 | 3.0 | 11130 | 0.5736 |
54
- | 0.5279 | 4.0 | 14840 | 0.4757 |
55
- | 0.427 | 5.0 | 18550 | 0.4029 |
56
 
57
 
58
  ### Framework versions
 
4
  base_model: bert-base-uncased
5
  tags:
6
  - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
  model-index:
13
  - name: phishing_detection_fine_tuned_bert
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.2946
25
+ - Accuracy: 0.8809
26
+ - F1: 0.8809
27
+ - Precision: 0.8808
28
+ - Recall: 0.8809
29
 
30
  ## Model description
31
 
 
51
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_steps: 500
54
+ - num_epochs: 1
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 0.2703 | 1.0 | 3622 | 0.2946 | 0.8809 | 0.8809 | 0.8808 | 0.8809 |
 
 
 
 
61
 
62
 
63
  ### Framework versions