--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: phishing_detection_fine_tuned_bert results: [] --- # phishing_detection_fine_tuned_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3343 - Accuracy: 0.8565 - F1: 0.8573 - Precision: 0.8596 - Recall: 0.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.411 | 1.0 | 3622 | 0.3300 | 0.8222 | 0.8242 | 0.8509 | 0.8222 | | 0.4471 | 2.0 | 7244 | 0.6779 | 0.8154 | 0.8067 | 0.8274 | 0.8154 | | 0.6583 | 3.0 | 10866 | 0.6717 | 0.6079 | 0.4597 | 0.3695 | 0.6079 | | 0.6286 | 4.0 | 14488 | 0.6698 | 0.6079 | 0.4597 | 0.3695 | 0.6079 | | 0.6527 | 5.0 | 18110 | 0.6697 | 0.6079 | 0.4597 | 0.3695 | 0.6079 | | 0.336 | 6.0 | 21732 | 0.4681 | 0.7707 | 0.7719 | 0.8293 | 0.7707 | | 0.5686 | 7.0 | 25354 | 0.6242 | 0.5740 | 0.5518 | 0.7128 | 0.5740 | | 0.334 | 8.0 | 28976 | 0.3666 | 0.8279 | 0.8298 | 0.8433 | 0.8279 | | 0.4017 | 9.0 | 32598 | 0.3711 | 0.8571 | 0.8561 | 0.8564 | 0.8571 | | 0.2285 | 10.0 | 36220 | 0.3343 | 0.8565 | 0.8573 | 0.8596 | 0.8565 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0