File size: 40,479 Bytes
a2eca76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import base64
import io
import json
import os
from typing import List

import numpy as np
import requests
import triton_python_backend_utils as pb_utils
from PIL import Image
from transformers import AutoProcessor, AutoTokenizer, T5Tokenizer


class TritonPythonModel:
    """Your Python model must use the same class name. Every Python model
    that is created must have "TritonPythonModel" as the class name.
    """

    def initialize(self, args):
        """`initialize` is called only once when the model is being loaded.
        Implementing `initialize` function is optional. This function allows
        the model to initialize any state associated with this model.
        Parameters
        ----------
        args : dict
          Both keys and values are strings. The dictionary keys and values are:
          * model_config: A JSON string containing the model configuration
          * model_instance_kind: A string containing model instance kind
          * model_instance_device_id: A string containing model instance device ID
          * model_repository: Model repository path
          * model_version: Model version
          * model_name: Model name
        """
        # Parse model configs
        model_config = json.loads(args['model_config'])
        tokenizer_dir = model_config['parameters']['tokenizer_dir'][
            'string_value']

        add_special_tokens = model_config['parameters'].get(
            'add_special_tokens')
        visual_model_path = model_config['parameters']['visual_model_path'][
            'string_value']
        max_num_images = model_config['parameters'].get('max_num_images')

        if max_num_images is not None:
            max_num_images_str = max_num_images['string_value']
            if max_num_images_str.isdigit():
                self.max_num_images = int(max_num_images_str)
            else:
                print(
                    f"[TensorRT-LLM][WARNING] 'max_num_images' parameter is not set correctly (value is {max_num_images_str}). Will be set to None"
                )
                self.max_num_images = None
        else:
            print(
                f"[TensorRT-LLM][WARNING] Don't setup 'max_num_images'. Set it as None by default."
            )
            self.max_num_images = None
        if visual_model_path == "${visual_model_path}" or visual_model_path == "":
            visual_model_path = None

        if add_special_tokens is not None:
            add_special_tokens_str = add_special_tokens['string_value'].lower()
            if add_special_tokens_str in [
                    'true', 'false', '1', '0', 't', 'f', 'y', 'n', 'yes', 'no'
            ]:
                self.add_special_tokens = add_special_tokens_str in [
                    'true', '1', 't', 'y', 'yes'
                ]
            else:
                print(
                    f"[TensorRT-LLM][WARNING] Don't setup 'add_special_tokens' correctly (set value is {add_special_tokens['string_value']}). Set it as True by default."
                )
                self.add_special_tokens = True
        else:
            print(
                f"[TensorRT-LLM][WARNING] Don't setup 'add_special_tokens'. Set it as True by default."
            )
            self.add_special_tokens = True

        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
                                                       legacy=False,
                                                       padding_side='left',
                                                       trust_remote_code=True)

        if isinstance(self.tokenizer, T5Tokenizer):
            self.tokenizer_bos_id = self.tokenizer.sp_model.bos_id()

        if not self.tokenizer.pad_token:
            self.tokenizer.pad_token = self.tokenizer.eos_token

        self.tokenizer_end_id = self.tokenizer.encode(
            self.tokenizer.eos_token, add_special_tokens=False)[0]
        self.tokenizer_pad_id = self.tokenizer.encode(
            self.tokenizer.pad_token, add_special_tokens=False)[0]
        self.vocab_size = self.tokenizer.vocab_size

        self.is_multimodal = False
        self.model_type = None
        self.vision_preprocessor = None

        if visual_model_path is not None:
            self.is_multimodal = True
            visual_model_path = os.path.join(visual_model_path, 'config.json')
            with open(visual_model_path, 'r') as f:
                visual_model_config = json.load(f)
            self.model_type = visual_model_config['builder_config'][
                'model_type']

            assert self.model_type in [
                'llava', 'blip2-opt', 'vila', 'mllama', 'llava_onevision'
            ], f"[TensorRT-LLM][ERROR] Currently supported multi-modal models are llava, blip2-opt, vila, mllama and llava_onevision. Got {self.model_type}."

            assert self.model_type != 'llava_onevison' or self.max_num_images is None or self.max_num_images <= 1, f"LLaVA-OneVsion is not support multi image inference currently."

            llm_model_path = model_config['parameters']['gpt_model_path'][
                'string_value']
            llm_model_path = os.path.join(llm_model_path, 'config.json')
            with open(llm_model_path, 'r') as f:
                llm_model_config = json.load(f)
            self.vocab_size = int(
                llm_model_config["pretrained_config"]["vocab_size"])
            self._setup_ptable_shape(llm_model_config)

            if self.model_type == 'mllama' or self.model_type == 'llava_onevision':
                self.vision_preprocessor = VisionPreProcessor(
                    self.model_type,
                    AutoProcessor.from_pretrained(tokenizer_dir), model_config)

        # Parse model output configs and convert Triton types to numpy types
        output_names = [
            "INPUT_ID", "DECODER_INPUT_ID", "REQUEST_INPUT_LEN",
            "REQUEST_DECODER_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS",
            "OUT_END_ID", "OUT_PAD_ID", "OUT_PROMPT_TABLE_EXTRA_IDS",
            "PIXEL_VALUES", "IMAGE_SIZES"
        ]
        input_names = ["EMBEDDING_BIAS_WORDS", "EMBEDDING_BIAS_WEIGHTS"]
        for input_name in input_names:
            setattr(
                self,
                input_name.lower() + "_dtype",
                pb_utils.triton_string_to_numpy(
                    pb_utils.get_input_config_by_name(
                        model_config, input_name)['data_type']))

        for output_name in output_names:
            setattr(
                self,
                output_name.lower() + "_dtype",
                pb_utils.triton_string_to_numpy(
                    pb_utils.get_output_config_by_name(
                        model_config, output_name)['data_type']))

    def _setup_ptable_shape(self, llm_model_config):
        max_prompt_embedding_table_size = llm_model_config['build_config'][
            'max_prompt_embedding_table_size']
        max_batch_size = llm_model_config['build_config']['max_batch_size']

        num_visual_features = max_prompt_embedding_table_size // max_batch_size
        hidden_size = llm_model_config['pretrained_config']['hidden_size']
        if self.max_num_images is not None:
            num_visual_features = num_visual_features // self.max_num_images

        self.ptable_shape = (-1, num_visual_features, hidden_size)

    def execute(self, requests):
        """`execute` must be implemented in every Python model. `execute`
        function receives a list of pb_utils.InferenceRequest as the only
        argument. This function is called when an inference is requested
        for this model. Depending on the batching configuration (e.g. Dynamic
        Batching) used, `requests` may contain multiple requests. Every
        Python model, must create one pb_utils.InferenceResponse for every
        pb_utils.InferenceRequest in `requests`. If there is an error, you can
        set the error argument when creating a pb_utils.InferenceResponse.
        Parameters
        ----------
        requests : list
          A list of pb_utils.InferenceRequest
        Returns
        -------
        list
          A list of pb_utils.InferenceResponse. The length of this list must
          be the same as `requests`
        """

        responses = []

        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        for idx, request in enumerate(requests):
            # Get input tensors
            query = pb_utils.get_input_tensor_by_name(request,
                                                      'QUERY').as_numpy()
            batch_size = query.shape[0]

            decoder_query = pb_utils.get_input_tensor_by_name(
                request, 'DECODER_QUERY')
            if decoder_query is not None:
                decoder_query = decoder_query.as_numpy()

            request_output_len = pb_utils.get_input_tensor_by_name(
                request, 'REQUEST_OUTPUT_LEN').as_numpy()

            bad_words_dict = pb_utils.get_input_tensor_by_name(
                request, 'BAD_WORDS_DICT')
            if bad_words_dict is not None:
                bad_words_dict = bad_words_dict.as_numpy()

            stop_words_dict = pb_utils.get_input_tensor_by_name(
                request, 'STOP_WORDS_DICT')
            if stop_words_dict is not None:
                stop_words_dict = stop_words_dict.as_numpy()

            embedding_bias_words = pb_utils.get_input_tensor_by_name(
                request, 'EMBEDDING_BIAS_WORDS')
            if embedding_bias_words is not None:
                embedding_bias_words = embedding_bias_words.as_numpy()

            embedding_bias_weights = pb_utils.get_input_tensor_by_name(
                request, 'EMBEDDING_BIAS_WEIGHTS')
            if embedding_bias_weights is not None:
                embedding_bias_weights = embedding_bias_weights.as_numpy()

            # Take the end_id from the input tensors
            # If not specified, use tokenizer to get end_id
            end_id = pb_utils.get_input_tensor_by_name(request, 'END_ID')
            if end_id is not None:
                end_id = end_id.as_numpy()
            else:
                end_id = [[self.tokenizer_end_id]] * batch_size

            # Take the pad_id from the input tensors
            # If not specified, use tokenizer to get pad_id
            pad_id = pb_utils.get_input_tensor_by_name(request, 'PAD_ID')
            if pad_id is not None:
                pad_id = pad_id.as_numpy()
            else:
                pad_id = [[self.tokenizer_pad_id]] * batch_size

            # Take the extra_id from the input tensors
            # Extra id is used in kv cache reuse for p-tuning
            prompt_table_extra_id = pb_utils.get_input_tensor_by_name(
                request, 'PROMPT_TABLE_EXTRA_ID')
            if prompt_table_extra_id is not None:
                prompt_table_extra_id = prompt_table_extra_id.as_numpy()
                assert prompt_table_extra_id.shape[
                    0] == batch_size, "Prompt table extra id must have the same batch size as Query"
                assert prompt_table_extra_id.shape[
                    1] == 1, "Multiple IDs cannot be provided for a single image"

            # Preprocessing vision input passed as a url or bytes tensor
            img_urls = pb_utils.get_input_tensor_by_name(request, 'IMAGE_URL')
            image_bytes = pb_utils.get_input_tensor_by_name(
                request, 'IMAGE_BYTES')
            video_bytes = pb_utils.get_input_tensor_by_name(
                request, 'VIDEO_BYTES')
            vision_processed_tensors = []
            visual_tokens = []
            if self.is_multimodal and (img_urls or image_bytes or video_bytes):
                assert self.vision_preprocessor != None, "Vision preprocessor for preparing images before encoding is None"
                processed_tensors = {}
                if self.model_type == 'mllama':
                    processed_tensors = self.vision_preprocessor.mllama_process(
                        queries=query.astype(str).tolist(),
                        img_urls=img_urls,
                        image_bytes=image_bytes,
                    )
                elif self.model_type == 'llava_onevision':
                    if video_bytes is None:
                        processed_tensors, visual_tokens = self.vision_preprocessor.llava_onevision_process_image(
                            queries=query.astype(str).tolist(),
                            img_urls=img_urls,
                            image_bytes=image_bytes,
                        )
                    else:
                        processed_tensors, visual_tokens = self.vision_preprocessor.llava_onevision_process_video(
                            queries=query.astype(str).tolist(),
                            video_bytes=video_bytes,
                        )
                else:
                    raise ValueError(
                        "Unsupported model type for IMAGE_BYTES or IMAGE_URL inputs"
                    )
                vision_processed_tensors = [
                    pb_utils.Tensor.from_dlpack(k, v)
                    for k, v in processed_tensors.items()
                ]
            else:
                assert self.model_type != "llava_onevision", "Image processing requires IMAGE_BYTES or IMAGE_URL to be provided"

            # Preprocessing input data.
            # For the LLaVA_OneVision model, num_visual_features is not a fixed value
            input_id, request_input_len = self._create_request(
                query, visual_tokens)
            if decoder_query is not None:
                decoder_input_id, request_decoder_input_len = self._create_request(
                    decoder_query)
            else:
                decoder_input_id = pad_id * np.ones((batch_size, 1), np.int32)
                request_decoder_input_len = 1 * np.ones(
                    (batch_size, 1), np.int32)

            bad_words = self._to_word_list_format(bad_words_dict, batch_size)
            stop_words = self._to_word_list_format(stop_words_dict, batch_size)

            embedding_bias = self._get_embedding_bias(
                embedding_bias_words, embedding_bias_weights,
                self.embedding_bias_weights_dtype, batch_size)

            if prompt_table_extra_id is not None:
                prompt_table_extra_ids = np.zeros_like(input_id)
                for i in range(batch_size):
                    prompt_table_extra_ids[i] = np.where(
                        input_id[i] >= self.vocab_size,
                        prompt_table_extra_id[i], 0)

            # Create output tensors. You need pb_utils.Tensor
            # objects to create pb_utils.InferenceResponse.
            input_id_tensor = pb_utils.Tensor(
                'INPUT_ID', input_id.astype(self.input_id_dtype))
            request_input_len_tensor = pb_utils.Tensor(
                'REQUEST_INPUT_LEN',
                request_input_len.astype(self.request_input_len_dtype))
            decoder_input_id_tensor = pb_utils.Tensor(
                'DECODER_INPUT_ID',
                decoder_input_id.astype(self.decoder_input_id_dtype))
            request_decoder_input_len_tensor = pb_utils.Tensor(
                'REQUEST_DECODER_INPUT_LEN',
                request_decoder_input_len.astype(
                    self.request_decoder_input_len_dtype))
            request_output_len_tensor = pb_utils.Tensor(
                'REQUEST_OUTPUT_LEN', request_output_len)
            bad_words_ids_tensor = pb_utils.Tensor('BAD_WORDS_IDS', bad_words)
            stop_words_ids_tensor = pb_utils.Tensor('STOP_WORDS_IDS',
                                                    stop_words)
            embedding_bias_tensor = pb_utils.Tensor('EMBEDDING_BIAS',
                                                    embedding_bias)
            end_id_tensor = pb_utils.Tensor('OUT_END_ID',
                                            np.array(end_id, dtype=np.int32))
            pad_id_tensor = pb_utils.Tensor('OUT_PAD_ID',
                                            np.array(pad_id, dtype=np.int32))

            if prompt_table_extra_id is not None:
                prompt_table_extra_ids_tensor = pb_utils.Tensor(
                    'OUT_PROMPT_TABLE_EXTRA_IDS',
                    np.array(prompt_table_extra_ids,
                             dtype=self.out_prompt_table_extra_ids_dtype))
                inference_response = pb_utils.InferenceResponse(output_tensors=[
                    input_id_tensor, decoder_input_id_tensor,
                    bad_words_ids_tensor, stop_words_ids_tensor,
                    request_input_len_tensor, request_decoder_input_len_tensor,
                    request_output_len_tensor, embedding_bias_tensor,
                    end_id_tensor, pad_id_tensor, prompt_table_extra_ids_tensor
                ] + vision_processed_tensors)
            else:
                inference_response = pb_utils.InferenceResponse(
                    output_tensors=[
                        input_id_tensor, decoder_input_id_tensor,
                        bad_words_ids_tensor, stop_words_ids_tensor,
                        request_input_len_tensor,
                        request_decoder_input_len_tensor,
                        request_output_len_tensor, embedding_bias_tensor,
                        end_id_tensor, pad_id_tensor
                    ] + vision_processed_tensors)
            responses.append(inference_response)

        # You should return a list of pb_utils.InferenceResponse. Length
        # of this list must match the length of `requests` list.
        return responses

    def finalize(self):
        """`finalize` is called only once when the model is being unloaded.
        Implementing `finalize` function is optional. This function allows
        the model to perform any necessary clean ups before exit.
        """
        print('Cleaning up...')

    def _split_prompt_by_images(self,
                                concatenated_ids,
                                image_token_index=-200):
        """
        Splits tokenized prompts by image placeholders for each sample in the batch.

        Args:
            concatenated_ids (np.ndarray): A batch of concatenated token IDs, where image placeholders are indicated by `image_token_index`.

        Returns:
            List[List[np.ndarray]]: A list containing lists of token ID arrays for each prompt segment, per batch sample.
        """
        batch_splits = []
        for batch in concatenated_ids:
            zero_indices = np.where(batch == image_token_index)[0]
            start_idx = 0
            splits = []
            for idx in zero_indices:
                if start_idx != idx:
                    splits.append(batch[start_idx:idx].reshape(1, -1))
                start_idx = idx + 1
            if start_idx < len(batch):
                splits.append(batch[start_idx:].reshape(1, -1))

            splits = [split for split in splits if split.size > 0]
            batch_splits.append(splits)

        return batch_splits

    def _setup_fake_prompts(self, batch_size, batch_split_prompts):
        """
        Replaces image placeholders with unique fake prompt IDs for multi-image inputs.

        Args:
            batch_size (int): The number of samples in the batch.
            batch_split_prompts (List[List[np.ndarray]]): Tokenized prompt segments for each batch sample.

        Returns:
            np.ndarray: An array of input IDs with image placeholders replaced by fake prompt IDs.
        """

        num_visual_features = self.ptable_shape[1]
        input_ids_list = []

        for batch_idx in range(batch_size):
            splits = batch_split_prompts[batch_idx]
            sample_input_ids = [splits[0]]
            sample_fake_prompt_counter = self.vocab_size

            for split_idx in range(len(splits) - 1):
                fake_prompt_id = np.arange(
                    sample_fake_prompt_counter,
                    sample_fake_prompt_counter + num_visual_features)
                sample_fake_prompt_counter += num_visual_features
                fake_prompt_id = np.expand_dims(fake_prompt_id, axis=0)
                sample_input_ids.append(fake_prompt_id)
                sample_input_ids.append(splits[split_idx + 1])

            sample_input_ids = np.concatenate(sample_input_ids, axis=1)
            input_ids_list.append(sample_input_ids)

        # Pad the input_ids to the same length for bs > 1
        max_seq_len = max(
            [sample_input_ids.shape[1] for sample_input_ids in input_ids_list])
        input_ids_padded = []
        for sample_input_ids in input_ids_list:
            seq_len = sample_input_ids.shape[1]
            pad_width = max_seq_len - seq_len
            if pad_width > 0:
                sample_input_ids_padded = np.pad(
                    sample_input_ids, ((0, 0), (0, pad_width)),
                    'constant',
                    constant_values=self.tokenizer_pad_id)
            else:
                sample_input_ids_padded = sample_input_ids
            input_ids_padded.append(sample_input_ids_padded)

        input_ids = np.stack(input_ids_padded)
        input_ids = input_ids.reshape(batch_size, -1).astype(np.int32)

        return input_ids

    def _process_multi_image_inputs(self, query, image_token_index=-200):
        """
        Processes input queries that contain multiple images by tokenizing the input strings and inserting image_token_index between the parts.

        Args:
            query (np.ndarray): Batch of input strings.

        Returns:
            List[np.ndarray]: List of tokenized input IDs for each sample.
        """
        start_ids = []
        for s in query:
            parts = s[0].decode().split('<image>')
            num_images = len(parts) - 1
            if num_images > self.max_num_images:
                raise ValueError(
                    f"The number of images in the request ({num_images}) exceeds the maximum allowed ({self.max_num_images})."
                )
            tokenized_parts = [
                self.tokenizer.encode(part, add_special_tokens=False)
                for part in parts
            ]

            # Insert `image_token_index` between the parts to represent <image>
            final_ids = []
            for i, part in enumerate(tokenized_parts):
                final_ids.extend(part)
                if i < len(tokenized_parts) - 1:
                    final_ids.append(image_token_index)

            start_ids.append(np.array(final_ids).astype(int))

        return start_ids

    def _create_request(self, query, visual_tokens=None):
        """
            query : batch string (2D numpy array)
        """
        if isinstance(self.tokenizer, T5Tokenizer):
            start_ids = [
                np.array([self.tokenizer_bos_id] + self.tokenizer.encode(
                    s[0].decode(), add_special_tokens=self.add_special_tokens)
                         ).astype(int) for s in query
            ]
        else:
            if self.is_multimodal and self.max_num_images and self.max_num_images > 1:
                start_ids = self._process_multi_image_inputs(query)

            else:
                start_ids = [
                    np.array(
                        self.tokenizer.encode(s[0].decode(),
                                              add_special_tokens=self.
                                              add_special_tokens)).astype(int)
                    for s in query
                ]

        if self.is_multimodal:
            if 'blip2' in self.model_type or 'mllama' == self.model_type:
                pre_prompt = None
                post_prompt = None
            elif 'llava' == self.model_type:
                pre_prompt = "USER:\n"
                post_prompt = " ASSISTANT:"
            elif 'vila' == self.model_type:
                pre_prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: "
                post_prompt = " ASSISTANT:"
            elif 'llava_onevision' == self.model_type:
                pre_prompt = "<|im_start|>user "
                post_prompt = "<|im_end|><|im_start|>assistant\n"

            pre_prompt_id = np.array(
                self.tokenizer.encode(
                    pre_prompt,
                    add_special_tokens=self.add_special_tokens,
                    padding=True)) if pre_prompt is not None else np.array(
                        [], dtype=int)

            post_prompt_id = np.array(
                self.tokenizer.encode(
                    post_prompt,
                    add_special_tokens=self.add_special_tokens,
                    padding=True)) if post_prompt is not None else np.array(
                        [], dtype=int)

            if self.max_num_images and self.max_num_images > 1:
                concatenated_ids = [
                    np.concatenate((pre_prompt_id, ids, post_prompt_id),
                                   axis=0) for ids in start_ids
                ]
                batch_split_prompts = self._split_prompt_by_images(
                    concatenated_ids)
                start_ids = self._setup_fake_prompts(query.shape[0],
                                                     batch_split_prompts)
            elif self.model_type == 'llava_onevision':
                fake_prompt_ids = []
                extra_id = np.array(
                    self.tokenizer.encode(
                        '\n',
                        add_special_tokens=self.add_special_tokens,
                        padding=True))
                for tokens in visual_tokens:
                    prompt_id = np.arange(self.vocab_size,
                                          self.vocab_size + tokens)
                    fake_prompt_ids.append(prompt_id)
                start_ids = [
                    np.concatenate((pre_prompt_id, prompt_id, extra_id, ids,
                                    post_prompt_id),
                                   axis=0)
                    for prompt_id, ids in zip(fake_prompt_ids, start_ids)
                ]
            else:
                fake_prompt_id = np.arange(
                    self.vocab_size, self.vocab_size + self.ptable_shape[1])
                start_ids = [
                    np.concatenate(
                        (pre_prompt_id, fake_prompt_id, ids, post_prompt_id),
                        axis=0) for ids in start_ids
                ]

        start_lengths = np.array([[len(ids)] for ids in start_ids]).astype(int)

        max_len = 0
        for seq in start_ids:
            max_len = max(max_len, seq.shape[0])
        start_ids = np.stack([
            np.pad(seq, (0, max_len - seq.shape[0]),
                   'constant',
                   constant_values=(0, self.tokenizer_pad_id))
            for seq in start_ids
        ])

        return start_ids, start_lengths

    def _to_word_list_format(self, word_lists: List[List[str | bytes]],
                             batch_size):
        '''
        word_lists format:
            len(word_lists) == batch_size
            word_lists[i] means the words associated to batch item i. A "word" may actually be any string. Like "lorem" or "lorem ipsum".
        '''
        assert self.tokenizer != None, "need to set tokenizer"

        if word_lists is None:
            # Return an empty array of shape (1,2,0)
            return np.empty([batch_size, 2, 0], dtype="int32")

        flat_ids = []
        offsets = []
        for word_list in word_lists:
            item_flat_ids = []
            item_offsets = []

            for word in word_list:
                if isinstance(word, bytes):
                    word = word.decode()

                ids = self.tokenizer.encode(word, add_special_tokens=False)
                if len(ids) == 0:
                    continue

                item_flat_ids += ids
                item_offsets.append(len(ids))

            flat_ids.append(np.array(item_flat_ids))
            offsets.append(np.cumsum(np.array(item_offsets)))

        pad_to = max(1, max(len(ids) for ids in flat_ids))

        for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
            flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)),
                                 constant_values=0)
            offsets[i] = np.pad(offs, (0, pad_to - len(offs)),
                                constant_values=-1)

        return np.array([flat_ids, offsets], dtype="int32").transpose(
            (1, 0, 2))

    def _get_embedding_bias(self, embedding_bias_words, embedding_bias_weights,
                            bias_dtype, batch_size):

        assert self.tokenizer != None, "need to set tokenizer"

        if embedding_bias_words is None or embedding_bias_weights is None:
            return np.empty([batch_size, 0],
                            dtype=self.embedding_bias_weights_dtype)

        batch_embedding_bias = []
        for words, weights in zip(embedding_bias_words,
                                  embedding_bias_weights):

            vocab_size = len(self.tokenizer.vocab)
            embedding_bias = [0.] * vocab_size

            assert len(words) == len(
                weights
            ), "Embedding bias words must have same dimension as embedding bias weights"

            for word, weight in zip(words, weights):
                if isinstance(word, bytes):
                    word = word.decode()
                ids = self.tokenizer.encode(word)

                if len(ids) == 0:
                    continue

                for id in ids:
                    embedding_bias[id] += weight

            batch_embedding_bias.append(np.array(embedding_bias))

        return np.array(batch_embedding_bias, dtype=bias_dtype)


class VisionPreProcessor:
    """ A class that can load images from url requests, and process them via a vision model processor,
    in preparation for the vision encoder.
    """

    def __init__(self,
                 vision_model_type,
                 vision_model_processor,
                 preprocessor_model_config={}):
        # import libraries that are only relevant for multimodal models
        import torch
        from torch.utils.dlpack import from_dlpack

        # NOTE: Due to the behavior of MPI initialization, it is recommended to avoid using import tensorrt_llm
        #       except for the specific modules tensorrt_llm and multimodal_encoders.
        #       As a result, the function str_dtype_to_torch has been copied directly from tensorrt_llm._utils.
        _str_to_torch_dtype_dict = dict(
            bfloat16=torch.bfloat16,
            float16=torch.float16,
            float32=torch.float32,
            int64=torch.int64,
            int32=torch.int32,
            int8=torch.int8,
            bool=torch.bool,
            fp8=torch.float8_e4m3fn,
        )

        def str_dtype_to_torch(dtype):
            ret = _str_to_torch_dtype_dict.get(dtype)
            assert ret is not None, f'Unsupported dtype: {dtype}'
            return ret

        self.load_images_tensor = lambda tensor: tensor if not hasattr(
            tensor, 'to_dlpack') else from_dlpack(tensor.to_dlpack())

        # extract expected output tensor dtype
        self.output_str_dtypes = {}
        for properties in preprocessor_model_config.get('output', []):
            dtype = properties['data_type']
            self.output_str_dtypes[properties['name']] = np.dtype(
                pb_utils.triton_string_to_numpy(dtype)).name

        # create method for converting output tensors batch to the expected type
        self.convert_tensor_list_to_tensor = lambda tensor_list: torch.concat(
            [
                torch.from_numpy(x) if isinstance(x, np.ndarray) else x
                for x in tensor_list
            ],
            dim=0)
        self.convert_tensor_to_str_dtype = lambda tensor, dtype: tensor.to(
            str_dtype_to_torch(dtype))

        # create model-specific processor
        self.vision_model_processor = vision_model_processor
        self.vision_model_type = vision_model_type

    def load_images_from_urls(self, img_urls):
        images = []
        for img_url in img_urls:
            img_url = img_url.decode()
            if img_url.startswith("data:image/jpeg;base64,"):
                image_base64 = img_url.split(",")[1]
                # Decode the base64 string
                image_data = base64.b64decode(image_base64)
                # Create a BytesIO object from the decoded data
                image_buffer = io.BytesIO(image_data)
                images.append(Image.open(image_buffer))
            else:
                images.append(
                    Image.open(requests.get(img_url, stream=True).raw))
        return images

    def mllama_process(self, queries, img_urls=None, image_bytes=None):
        vision_processed_tensors = {}
        if img_urls is not None or image_bytes is not None:
            if img_urls is not None:
                # download and read images
                images = [
                    self.load_images_from_urls(urls)
                    for urls in img_urls.as_numpy()
                ]
            else:
                images = [
                    img for img_list in self.load_images_tensor(image_bytes)
                    for img in img_list
                ]

            batch_size = len(images)

            preprocessor_outputs = {}
            possible_output_names = [
                'PIXEL_VALUES', 'ASPECT_RATIO_IDS', 'ASPECT_RATIO_MASK',
                'CROSS_ATTENTION_MASK'
            ]
            for batch_id in range(batch_size):
                # Preprocess images and query
                processed_vision_data = self.vision_model_processor(
                    images=images[batch_id],
                    text=queries[batch_id],
                    return_tensors="pt")

                # Reshape pixel_values to [num_images, *HWC/CHW]
                val = processed_vision_data["pixel_values"]

                val = val.reshape(1, -1, *(val.shape[-3:]))
                processed_vision_data["pixel_values"] = val
                # Create vision output tensors
                for key in possible_output_names:
                    val = processed_vision_data.get(key.lower())
                    if val is not None:
                        if key not in preprocessor_outputs:
                            preprocessor_outputs[key] = []
                        preprocessor_outputs[key].append(val)

            for key, tensor_list in preprocessor_outputs.items():
                val = self.convert_tensor_list_to_tensor(tensor_list)
                if key in self.output_str_dtypes:
                    val = self.convert_tensor_to_str_dtype(
                        val, self.output_str_dtypes[key])
                vision_processed_tensors[key] = val
        return vision_processed_tensors

    def llava_onevision_process_image(self,
                                      queries,
                                      img_urls=None,
                                      image_bytes=None):

        import torch
        vision_processed_tensors = {}
        if img_urls is not None:
            # download and read images
            images = [
                self.load_images_from_urls(urls)
                for urls in img_urls.as_numpy()
            ]
        else:
            images = [
                img for img_list in self.load_images_tensor(image_bytes)
                for img in img_list
            ]

        batch_size = len(images)
        assert len(
            queries
        ) == batch_size, f"Image must have the same batch size as Query."
        preprocessor_outputs = {}
        possible_output_names = ['PIXEL_VALUES', 'IMAGE_SIZES']
        visual_tokens = []
        for batch_id in range(batch_size):
            # Preprocess images and query
            processed_vision_data = self.vision_model_processor(
                images=images[batch_id], text='<image>', return_tensors="pt")
            visual_tokens.append(processed_vision_data['input_ids'].shape[1])

            # Create vision output tensors
            for key in possible_output_names:
                val = processed_vision_data.get(key.lower())
                if val is not None:
                    if key not in preprocessor_outputs:
                        preprocessor_outputs[key] = []
                    preprocessor_outputs[key].append(val)

        max_patch = max(x.shape[1]
                        for x in preprocessor_outputs['PIXEL_VALUES'])
        preprocessor_outputs['PIXEL_VALUES'] = [
            torch.nn.functional.pad(
                image, (0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[1], 0, 0),
                mode='constant')
            for image in preprocessor_outputs['PIXEL_VALUES']
        ]
        for key, tensor_list in preprocessor_outputs.items():
            val = self.convert_tensor_list_to_tensor(tensor_list)
            if key in self.output_str_dtypes:
                val = self.convert_tensor_to_str_dtype(
                    val, self.output_str_dtypes[key])
            vision_processed_tensors[key] = val
        return vision_processed_tensors, visual_tokens

    def llava_onevision_process_video(self, queries, video_bytes=None):
        import torch
        vision_processed_tensors = {}
        videos = [video for video in self.load_images_tensor(video_bytes)]

        batch_size = len(videos)
        assert len(
            queries
        ) == batch_size, f"Video must have the same batch size as Query."
        preprocessor_outputs = {}
        preprocessor_outputs['PIXEL_VALUES'] = []
        preprocessor_outputs['IS_VIDEO_INPUT'] = []
        visual_tokens = []
        for batch_id in range(len(queries)):
            processed_vision_data = self.vision_model_processor(
                videos=list(videos[batch_id]),
                text='<video>',
                return_tensors="pt")
            visual_tokens.append(processed_vision_data['input_ids'].shape[1])
            preprocessor_outputs['PIXEL_VALUES'].append(
                processed_vision_data['pixel_values_videos'])
            preprocessor_outputs['IS_VIDEO_INPUT'].append(
                torch.ones((1, 1), dtype=torch.bool))

        for key, tensor_list in preprocessor_outputs.items():
            val = self.convert_tensor_list_to_tensor(tensor_list)
            if key in self.output_str_dtypes:
                val = self.convert_tensor_to_str_dtype(
                    val, self.output_str_dtypes[key])
            vision_processed_tensors[key] = val
        return vision_processed_tensors, visual_tokens