File size: 59,768 Bytes
a2eca76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 |
import datetime
import json
import os
import sys
import time
from dataclasses import dataclass
from random import randint
from threading import Lock, Thread
from typing import Any, List
import numpy as np
import torch
import triton_python_backend_utils as pb_utils
from torch import from_numpy
from torch.utils.dlpack import from_dlpack
import tensorrt_llm.bindings.executor as trtllm
from tensorrt_llm.llmapi.tokenizer import _xgrammar_tokenizer_info
METRIC_TOTAL_OUTPUT_TOKENS = "total_output_tokens"
METRIC_TOTAL_INPUT_TOKENS = "total_input_tokens"
import tensorrt_llm.logger as logger
# From https://github.com/pytorch/pytorch/blob/39425feac799905402abe4d15667fa47c344f2d7/torch/testing/_internal/common_utils.py#L1761
# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
numpy_to_torch_dtype_dict = {
np.bool_: torch.bool,
np.uint8: torch.uint8,
np.uint16: torch.uint16,
np.uint32: torch.uint32,
np.uint64: torch.uint64,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128
}
# Dict of torch dtype -> NumPy dtype
torch_to_numpy_dtype_dict = {
value: key
for (key, value) in numpy_to_torch_dtype_dict.items()
}
torch_to_numpy_dtype_dict.update({
torch.bfloat16: np.float32,
torch.complex32: np.complex64
})
@dataclass
class RequestData:
triton_req_id: int
triton_user_id: str
batch_index: int
batch_size: int
num_return_sequences: int
num_input_tokens: int
num_output_tokens: int
response_sender: Any
def mpi_comm():
from mpi4py import MPI
return MPI.COMM_WORLD
def mpi_rank():
return mpi_comm().Get_rank()
def get_input_tensor_by_name(request,
name,
expected_batch_size=None,
batch_index=None,
force_on_torch=False):
tensor = pb_utils.get_input_tensor_by_name(request, name)
if tensor is None:
return None
if tensor.is_cpu() and not force_on_torch:
tensor = tensor.as_numpy()
else:
tensor = from_dlpack(tensor.to_dlpack())
if expected_batch_size is not None and tensor.shape[
0] != expected_batch_size:
raise pb_utils.TritonModelException(
f"Expected batch size doesn't match batch size for tensor {name}. Expected {expected_batch_size} got {tensor.shape[0]}"
)
if batch_index is not None and expected_batch_size is not None and batch_index >= expected_batch_size:
raise pb_utils.TritonModelException(
f"Invalid batch index in get_input_tensor_by_name for {name}")
if batch_index is not None:
# Add leading 1 batch dimension
if isinstance(tensor, np.ndarray):
return np.expand_dims(tensor[batch_index], axis=0)
elif isinstance(tensor, torch.Tensor):
return torch.unsqueeze(tensor[batch_index], dim=0)
else:
return tensor
def get_input_scalar_by_name(request,
name,
expected_batch_size=1,
batch_index=0):
tensor = pb_utils.get_input_tensor_by_name(request, name)
if tensor is None:
return None
tensor = tensor.as_numpy()
if tensor.size != expected_batch_size:
raise pb_utils.TritonModelException(
f"Expected a scalar tensor for tensor {name}")
return tensor.item(batch_index)
def read_parameter_as_type(value, name, pytype=str):
if value == "":
return None
if value.startswith("${") and value.endswith("}"):
return None
if pytype is bool:
return value.lower() in ["1", "true"]
try:
result = pytype(value)
return result
except:
pb_utils.Logger.log_warning(
f"Could not read parameter '{name}' with value '{value}', will use default."
)
return None
def get_parameter(model_config, name, pytype=str):
if name not in model_config['parameters']:
return None
return read_parameter_as_type(
model_config['parameters'][name]['string_value'], name, pytype)
def convert_word_list(word_list):
if word_list is None:
return None
word_list = word_list.tolist()
if len(word_list) == 0 or len(word_list[0]) != 2:
raise pb_utils.TritonModelException(f"Invalid format for word list.")
words, indices = word_list[0]
result = []
current_index = 0
for i in indices:
if i == -1:
continue
if i > len(words):
raise pb_utils.TritonModelException(
f"Invalid format for word list.")
current_word = []
while current_index < i:
current_word.append(words[current_index])
current_index += 1
result.append(current_word)
return result
def parse_medusa_choices(medusa_choices):
if medusa_choices is None:
return None
try:
result = json.loads(
"[" + medusa_choices.replace("{", "[").replace("}", "]") + "]")
assert isinstance(result, list) and len(result) > 0
assert all([isinstance(x, list) for x in result])
assert all([isinstance(y, int) for x in result for y in x])
except Exception:
raise pb_utils.TritonModelException(
"Invalid format for medusa_choices")
return result
def parse_eagle_choices(eagle_choices):
return parse_medusa_choices(eagle_choices)
def get_sampling_config_from_request(request, batch_size=1, batch_index=0):
kwargs = {}
kwargs['beam_width'] = get_input_scalar_by_name(
request, 'beam_width', batch_size, batch_index) or 1
kwargs['top_k'] = get_input_scalar_by_name(request, 'runtime_top_k',
batch_size, batch_index)
kwargs['top_p'] = get_input_scalar_by_name(request, 'runtime_top_p',
batch_size, batch_index)
kwargs['top_p'] = None if kwargs['top_p'] is None or kwargs[
'top_p'] <= 0 else kwargs['top_p']
kwargs['random_seed'] = get_input_scalar_by_name(request, 'random_seed',
batch_size, batch_index)
kwargs['temperature'] = get_input_scalar_by_name(request, 'temperature',
batch_size, batch_index)
kwargs['min_length'] = get_input_scalar_by_name(request, 'min_length',
batch_size, batch_index)
kwargs['repetition_penalty'] = get_input_scalar_by_name(
request, 'repetition_penalty', batch_size, batch_index)
kwargs['presence_penalty'] = get_input_scalar_by_name(
request, 'presence_penalty', batch_size, batch_index)
kwargs['frequency_penalty'] = get_input_scalar_by_name(
request, 'frequency_penalty', batch_size, batch_index)
kwargs['length_penalty'] = get_input_scalar_by_name(
request, 'len_penalty', batch_size, batch_index)
kwargs['top_p_min'] = get_input_scalar_by_name(request,
'runtime_top_p_min',
batch_size, batch_index)
kwargs['top_p_reset_ids'] = get_input_scalar_by_name(
request, 'runtime_top_p_reset_ids', batch_size, batch_index)
kwargs['top_p_decay'] = get_input_scalar_by_name(request,
'runtime_top_p_decay',
batch_size, batch_index)
kwargs['beam_search_diversity_rate'] = get_input_scalar_by_name(
request, 'beam_search_diversity_rate', batch_size, batch_index)
kwargs['early_stopping'] = get_input_scalar_by_name(
request, 'early_stopping', batch_size, batch_index)
kwargs['num_return_sequences'] = get_input_scalar_by_name(
request, 'num_return_sequences', batch_size, batch_index) or 1
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.SamplingConfig(**kwargs)
def get_output_config_from_request(request, batch_size=1, batch_index=0):
kwargs = {}
kwargs["return_log_probs"] = get_input_scalar_by_name(
request, 'return_log_probs', batch_size, batch_index)
kwargs["return_context_logits"] = get_input_scalar_by_name(
request, 'return_context_logits', batch_size, batch_index)
kwargs["return_generation_logits"] = get_input_scalar_by_name(
request, 'return_generation_logits', batch_size, batch_index)
kwargs["return_perf_metrics"] = get_input_scalar_by_name(
request, 'return_kv_cache_reuse_stats', batch_size, batch_index)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.OutputConfig(**kwargs)
def get_external_draft_tokens_config_from_request(request,
batch_size=1,
batch_index=0):
kwargs = {}
draft_input_ids = get_input_tensor_by_name(request, 'draft_input_ids',
batch_size, batch_index)
if draft_input_ids is not None:
kwargs['tokens'] = draft_input_ids[0].tolist()
draft_logits = get_input_tensor_by_name(request, 'draft_logits',
batch_size, batch_index)
if draft_logits is not None:
kwargs['logits'] = from_numpy(draft_logits).squeeze(dim=0)
kwargs['acceptance_threshold'] = get_input_scalar_by_name(
request, 'draft_acceptance_threshold', batch_size, batch_index)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.ExternalDraftTokensConfig(**kwargs)
return None
def get_prompt_tuning_config_from_request(request,
batch_size=1,
batch_index=0,
input_length=0):
# prompt_vocab_size is unused by executor.
kwargs = {}
prompt_embedding_table = get_input_tensor_by_name(
request, 'prompt_embedding_table', batch_size, batch_index)
prompt_table_extra_ids = get_input_tensor_by_name(
request, 'prompt_table_extra_ids', batch_size, batch_index)
if prompt_embedding_table is not None:
if isinstance(prompt_embedding_table, np.ndarray):
kwargs["embedding_table"] = from_numpy(
prompt_embedding_table).squeeze(dim=0)
elif isinstance(prompt_embedding_table, torch.Tensor):
kwargs["embedding_table"] = prompt_embedding_table.squeeze(dim=0)
if prompt_table_extra_ids is not None:
prompt_table_extra_ids = prompt_table_extra_ids[0].tolist()
if len(prompt_table_extra_ids) != 0:
kwargs["input_token_extra_ids"] = prompt_table_extra_ids[
0:input_length]
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.PromptTuningConfig(**kwargs)
return None
def get_lora_config_from_request(request, batch_size=1, batch_index=0):
kwargs = {}
kwargs["task_id"] = get_input_scalar_by_name(request, 'lora_task_id',
batch_size, batch_index)
lora_weights = get_input_tensor_by_name(request, 'lora_weights',
batch_size, batch_index)
if lora_weights is not None:
kwargs["weights"] = from_numpy(lora_weights).squeeze(dim=0)
lora_config = get_input_tensor_by_name(request, 'lora_config', batch_size,
batch_index)
if lora_config is not None:
kwargs["config"] = from_numpy(lora_config).squeeze(dim=0)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.LoraConfig(**kwargs)
return None
def get_guided_decoding_params_from_request(request,
batch_size=1,
batch_index=0):
kwargs = {}
guided_decoding_guide_type = get_input_tensor_by_name(
request, 'guided_decoding_guide_type', batch_size, batch_index)
if guided_decoding_guide_type is not None:
guided_decoding_guide_type = guided_decoding_guide_type.squeeze(
axis=0)[0].decode()
guided_decoding_guide_type_mapping = {
"json": trtllm.GuidedDecodingParams.GuideType.JSON,
"json_schema": trtllm.GuidedDecodingParams.GuideType.JSON_SCHEMA,
"regex": trtllm.GuidedDecodingParams.GuideType.REGEX,
"ebnf_grammar": trtllm.GuidedDecodingParams.GuideType.EBNF_GRAMMAR
}
guided_decoding_guide_type = guided_decoding_guide_type_mapping.get(
guided_decoding_guide_type)
kwargs['guide_type'] = guided_decoding_guide_type
guided_decoding_guide = get_input_tensor_by_name(request,
'guided_decoding_guide',
batch_size, batch_index)
if guided_decoding_guide is not None:
kwargs['guide'] = guided_decoding_guide.squeeze(axis=0)[0].decode()
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if len(kwargs) > 0:
return trtllm.GuidedDecodingParams(**kwargs)
return None
def get_kv_cache_retention_config_from_request(request,
batch_size=1,
batch_index=0):
def get_tensor_and_check_length(name: str, expected_length: int):
tensor = get_input_tensor_by_name(request, name, batch_size,
batch_index)
if tensor is None:
raise RuntimeError(f"{name} must be provided.")
tensor = np.squeeze(tensor, axis=0)
if len(tensor) != expected_length:
raise RuntimeError(
f"Invalid {name} length. Expected length {expected_length}, got length {len(tensor)}"
)
return tensor
token_range_starts = get_input_tensor_by_name(
request, "retention_token_range_starts", batch_size, batch_index)
if token_range_starts is not None:
token_range_starts = np.squeeze(token_range_starts, axis=0)
token_range_ends = get_tensor_and_check_length(
"retention_token_range_ends", len(token_range_starts))
token_range_ends = [
None if end == -1 else end for end in token_range_ends
]
token_range_priorities = get_tensor_and_check_length(
"retention_token_range_priorities", len(token_range_starts))
token_range_durations_ms = get_input_tensor_by_name(
request, "retention_token_range_durations_ms", batch_size,
batch_index)
if token_range_durations_ms is None:
token_range_durations_ms = [None] * len(token_range_starts)
else:
token_range_durations_ms = np.squeeze(token_range_durations_ms,
axis=0)
token_range_durations_ms = [
None if duration == -1 else duration
for duration in token_range_durations_ms
]
if len(token_range_durations_ms) != len(token_range_starts):
raise RuntimeError(
f"Invalid retention_token_range_durations length. Expected length {len(token_range_starts)}, got length {len(token_range_durations_ms)}"
)
ranges = []
for start, end, priority, duration_ms in zip(token_range_starts,
token_range_ends,
token_range_priorities,
token_range_durations_ms):
ranges.append(
trtllm.KvCacheRetentionConfig.TokenRangeRetentionConfig(
token_start=start,
token_end=end,
priority=priority.item(),
duration_ms=None if duration_ms is None else
datetime.timedelta(milliseconds=duration_ms.item())))
decode_args = {}
decode_priority = get_input_scalar_by_name(
request, "retention_decode_priority", batch_size, batch_index)
if decode_priority is not None:
decode_args['decode_retention_priority'] = decode_priority
decode_duration_ms = get_input_scalar_by_name(
request, "retention_decode_duration_ms", batch_size, batch_index)
if decode_duration_ms is not None:
decode_args[
'decode_duration_ms'] = decode_duration_ms if decode_duration_ms != -1 else None
return trtllm.KvCacheRetentionConfig(
token_range_retention_configs=ranges, **decode_args)
return None
def build_1_2_5_buckets(max_value: int) -> List[int]:
"""
Builds a list of buckets with increasing powers of 10 multiplied by
mantissa values (1, 5), starting from 10 until the value exceeds
the specified maximum.
Example:
>>> build_1_2_5_buckets(1000)
[10, 50, 100, 500, 1000]
"""
mantissa_lst = [1, 5]
exponent = 1 # Start from exponent 1 instead of 0
buckets: List[int] = []
while True:
for m in mantissa_lst:
value = m * 10**exponent
if value <= max_value:
buckets.append(value)
else:
return buckets
exponent += 1
def convert_request(request, exclude_input_from_output, decoupled):
inputs = {}
input_token_ids = get_input_tensor_by_name(request, 'input_ids')
if input_token_ids is None:
raise pb_utils.TritonModelException(
"A value is required for input_ids")
if len(input_token_ids.shape) != 2:
raise pb_utils.TritonModelException(f"Invalid format for input_ids")
batch_size = input_token_ids.shape[0]
requests = []
for batch_index in range(0, batch_size):
input_token_ids = get_input_tensor_by_name(request, 'input_ids',
batch_size, batch_index)[0]
if input_token_ids is None:
raise pb_utils.TritonModelException(
"A value is required for input_ids")
input_token_ids = input_token_ids.tolist()
if len(input_token_ids) == 0:
raise pb_utils.TritonModelException(
f"Invalid format for input_ids")
input_length = get_input_scalar_by_name(request, 'input_lengths',
batch_size, batch_index)
if input_length is None:
input_length = len(input_token_ids)
# Trim input token ids with input_lengths
inputs['input_token_ids'] = input_token_ids[0:input_length]
inputs['max_new_tokens'] = get_input_scalar_by_name(
request, 'request_output_len', batch_size, batch_index)
if inputs['max_new_tokens'] is None:
raise pb_utils.TritonModelException(
"A value is required for request_output_len")
inputs['streaming'] = get_input_scalar_by_name(request, 'streaming',
batch_size, batch_index)
if inputs['streaming'] and not decoupled:
raise pb_utils.TritonModelException(
"Streaming is only supported in decoupled mode.")
inputs['end_id'] = get_input_scalar_by_name(request, 'end_id',
batch_size, batch_index)
inputs['pad_id'] = get_input_scalar_by_name(request, 'pad_id',
batch_size, batch_index)
inputs['stop_words'] = convert_word_list(
get_input_tensor_by_name(request, 'stop_words_list', batch_size,
batch_index))
inputs['bad_words'] = convert_word_list(
get_input_tensor_by_name(request, 'bad_words_list', batch_size,
batch_index))
embedding_bias = get_input_tensor_by_name(request, 'embedding_bias',
batch_size, batch_index)
if embedding_bias is not None and embedding_bias.size != 0:
inputs['embedding_bias'] = from_numpy(embedding_bias).squeeze(
dim=0)
sampling_config = get_sampling_config_from_request(
request, batch_size, batch_index)
output_config = get_output_config_from_request(request, batch_size,
batch_index)
req_exclude_input_from_output = get_input_scalar_by_name(
request, 'exclude_input_in_output', batch_size, batch_index)
if req_exclude_input_from_output is None:
# if request doesn't specify exclude_input_from_output, try to use the parameter
output_config.exclude_input_from_output = (
exclude_input_from_output
if exclude_input_from_output is not None else False)
else:
output_config.exclude_input_from_output = req_exclude_input_from_output
external_draft_tokens_config = get_external_draft_tokens_config_from_request(
request, batch_size, batch_index)
prompt_tuning_config = get_prompt_tuning_config_from_request(
request, batch_size, batch_index, input_length)
lora_config = get_lora_config_from_request(request, batch_size,
batch_index)
kv_cache_retention_config = get_kv_cache_retention_config_from_request(
request, batch_size, batch_index)
# Inputs for mllama support
encoder_input_features = get_input_tensor_by_name(
request, 'encoder_input_features', batch_size, batch_index)
if encoder_input_features is not None:
if isinstance(encoder_input_features, np.ndarray):
encoder_input_features = from_numpy(
encoder_input_features).squeeze(dim=0)
elif isinstance(encoder_input_features, torch.Tensor):
encoder_input_features = encoder_input_features.squeeze(dim=0)
inputs['encoder_input_features'] = encoder_input_features
logger.debug(
f"inputs to llm: encoder_input_features ({encoder_input_features.shape}"
)
encoder_output_length = get_input_tensor_by_name(
request, 'encoder_output_lengths', batch_size, batch_index)
if encoder_output_length is not None:
inputs['encoder_output_length'] = np.squeeze(
encoder_output_length, axis=0)
cross_attention_mask = get_input_tensor_by_name(
request, 'cross_attention_mask', batch_size, batch_index)
if cross_attention_mask is not None:
inputs['cross_attention_mask'] = cross_attention_mask[0]
logger.debug(
f"inputs to llm: cross_attention_mask ({ cross_attention_mask.shape})"
)
skip_cross_attn_blocks = get_input_tensor_by_name(
request,
'skip_cross_attn_blocks',
batch_size,
batch_index,
force_on_torch=True)
if skip_cross_attn_blocks is not None:
inputs['skip_cross_attn_blocks'] = skip_cross_attn_blocks[0]
logger.debug(
f"inputs to llm: skip_cross_attn_blocks ({ skip_cross_attn_blocks.shape})"
)
guided_decoding_params = get_guided_decoding_params_from_request(
request, batch_size, batch_index)
requests.append(
trtllm.Request(
**inputs,
sampling_config=sampling_config,
output_config=output_config,
external_draft_tokens_config=external_draft_tokens_config,
prompt_tuning_config=prompt_tuning_config,
lora_config=lora_config,
guided_decoding_params=guided_decoding_params,
kv_cache_retention_config=kv_cache_retention_config))
return requests
def convert_response(response,
batch_index,
batch_size,
num_return_sequences,
expected_logits_dtype=torch.float32):
if response.has_error():
return pb_utils.InferenceResponse(output_tensors=[],
error=pb_utils.TritonError(
response.error_msg)), True, 0
result = response.result
beam_lengths = np.expand_dims(
np.array([len(beam) for beam in result.output_token_ids], np.int32), 0)
max_beam_length = max([len(beam) for beam in result.output_token_ids])
output_ids = np.full((1, len(result.output_token_ids), max_beam_length),
-1, np.int32)
for idx, beam in enumerate(result.output_token_ids):
output_ids[0, idx, :len(beam)] = beam
output_lengths = output_ids.size
output_tensors = [
pb_utils.Tensor("output_ids", output_ids),
pb_utils.Tensor("sequence_length", beam_lengths),
]
if result.cum_log_probs is not None:
output_tensors.append(
pb_utils.Tensor(
"cum_log_probs",
np.expand_dims(np.array(result.cum_log_probs, np.float32), 0)))
if result.log_probs is not None:
output_tensors.append(
pb_utils.Tensor(
"output_log_probs",
np.expand_dims(np.array(result.log_probs, np.float32), 0)))
if result.context_logits is not None:
assert (result.context_logits.dtype is expected_logits_dtype)
output_tensors.append(
pb_utils.Tensor(
"context_logits",
np.expand_dims(
np.array(
result.context_logits, torch_to_numpy_dtype_dict[
result.context_logits.dtype]), 0)))
if result.generation_logits is not None:
assert (result.generation_logits.dtype is expected_logits_dtype)
output_tensors.append(
pb_utils.Tensor(
"generation_logits",
np.expand_dims(
np.array(
result.generation_logits, torch_to_numpy_dtype_dict[
result.generation_logits.dtype]), 0)))
if batch_size > 1:
output_tensors.append(
pb_utils.Tensor(
"batch_index",
np.expand_dims(np.array([batch_index], np.int32), 0)))
if num_return_sequences > 1:
output_tensors.append(
pb_utils.Tensor(
"sequence_index",
np.expand_dims(np.array([result.sequence_index], np.int32),
0)))
if result.request_perf_metrics is not None:
kv_cache_metrics = result.request_perf_metrics.kv_cache_metrics
output_tensors.append(
pb_utils.Tensor(
"kv_cache_alloc_new_blocks",
np.expand_dims(
np.array([kv_cache_metrics.num_new_allocated_blocks],
np.int32), 0)))
output_tensors.append(
pb_utils.Tensor(
"kv_cache_reused_blocks",
np.expand_dims(
np.array([kv_cache_metrics.num_reused_blocks], np.int32),
0)))
output_tensors.append(
pb_utils.Tensor(
"kv_cache_alloc_total_blocks",
np.expand_dims(
np.array([kv_cache_metrics.num_total_allocated_blocks],
np.int32), 0)))
return pb_utils.InferenceResponse(
output_tensors), result.is_final, output_lengths
def convert_scheduler_policy(batch_scheduler_policy: str):
if batch_scheduler_policy.lower() == "max_utilization":
return trtllm.CapacitySchedulerPolicy.MAX_UTILIZATION
elif batch_scheduler_policy.lower() == "guaranteed_no_evict":
return trtllm.CapacitySchedulerPolicy.GUARANTEED_NO_EVICT
raise pb_utils.TritonModelException(
f"batch_scheduler_policy value of '{batch_scheduler_policy}' is not supported."
)
def convert_batching_type(gpt_model_type: str):
if gpt_model_type is None:
return None
if gpt_model_type.lower(
) == "inflight_fused_batching" or gpt_model_type.lower(
) == "inflight_batching":
return trtllm.BatchingType.INFLIGHT
elif gpt_model_type.lower() == "v1":
return trtllm.BatchingType.STATIC
raise pb_utils.TritonModelException(
f"gpt_model_type value of '{gpt_model_type}' is not supported.")
def convert_decoding_mode(decoding_mode: str):
if decoding_mode is None:
return None
elif decoding_mode == "auto":
return trtllm.DecodingMode.Auto()
elif decoding_mode == "top_k":
return trtllm.DecodingMode.TopK()
elif decoding_mode == "top_p":
return trtllm.DecodingMode.TopP()
elif decoding_mode == "top_k_top_p":
return trtllm.DecodingMode.TopKTopP()
elif decoding_mode == "beam_search":
return trtllm.DecodingMode.BeamSearch()
elif decoding_mode == "medusa":
return trtllm.DecodingMode.Medusa()
elif decoding_mode == "redrafter":
return trtllm.DecodingMode.ExplicitDraftTokens()
elif decoding_mode == "lookahead":
return trtllm.DecodingMode.Lookahead()
elif decoding_mode == "eagle":
return trtllm.DecodingMode.Eagle()
raise pb_utils.TritonModelException(
f"decoding_mode value of '{decoding_mode}' is not supported.")
def convert_timestamp_to_seconds(timestamp: str):
return int(
datetime.datetime.strptime(timestamp,
"%m-%d-%Y %H:%M:%S.%f").timestamp())
def triton_string_to_torch(dtype):
type_map = {
"TYPE_BOOL": torch.bool,
"TYPE_UINT8": torch.uint8,
"TYPE_INT8": torch.int8,
"TYPE_INT16": torch.int16,
"TYPE_INT32": torch.int32,
"TYPE_INT64": torch.int64,
"TYPE_FP16": torch.float16,
"TYPE_FP32": torch.float32,
"TYPE_FP64": torch.float64,
"TYPE_BF16": torch.bfloat16
}
return type_map[dtype]
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def get_scheduler_config(self, model_config):
batch_scheduler_policy = get_parameter(model_config,
"batch_scheduler_policy")
if batch_scheduler_policy is None:
return trtllm.SchedulerConfig()
return trtllm.SchedulerConfig(
convert_scheduler_policy(batch_scheduler_policy))
def get_kv_cache_config(self, model_config):
kwargs = {
"enable_block_reuse":
get_parameter(model_config, "enable_kv_cache_reuse", bool),
"max_tokens":
get_parameter(model_config, "max_tokens_in_paged_kv_cache", int),
"sink_token_length":
get_parameter(model_config, "sink_token_length", int),
"free_gpu_memory_fraction":
get_parameter(model_config, "kv_cache_free_gpu_mem_fraction",
float),
"cross_kv_cache_fraction":
get_parameter(model_config, "cross_kv_cache_fraction", float),
"host_cache_size":
get_parameter(model_config, "kv_cache_host_memory_bytes", int),
"onboard_blocks":
get_parameter(model_config, "kv_cache_onboard_blocks", bool),
}
max_attention_window_size = get_parameter(model_config,
"max_attention_window_size")
if max_attention_window_size:
kwargs["max_attention_window"] = [
int(x) for x in max_attention_window_size.split(",")
]
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.KvCacheConfig(**kwargs)
def get_parallel_config(self, model_config):
kwargs = {}
gpu_device_ids = get_parameter(model_config, "gpu_device_ids")
if gpu_device_ids:
kwargs["device_ids"] = [int(x) for x in gpu_device_ids.split(",")]
self.use_orchestrator_mode = os.environ.get("TRTLLM_ORCHESTRATOR",
"0") == "1"
if self.use_orchestrator_mode:
kwargs[
"communication_mode"] = trtllm.CommunicationMode.ORCHESTRATOR
worker_path = get_parameter(model_config, "worker_path")
spawn_processes = os.environ.get(
"TRTLLM_ORCHESTRATOR_SPAWN_PROCESSES", "1") == "1"
if not spawn_processes:
raise pb_utils.TritonModelException(
"Orchestrator mode with --disable-spawn-processes is not supported in the Python backend."
)
is_orchestrator = (mpi_rank() == 0) if spawn_processes else True
if worker_path is not None:
raise pb_utils.TritonModelException(
"worker_path parameter is specified, but this is no longer supported. Please specify executor_worker_path instead to specify the location of the trtllmExecutorWorker executable."
)
executor_worker_path = get_parameter(model_config,
"executor_worker_path")
kwargs["orchestrator_config"] = trtllm.OrchestratorConfig(
is_orchestrator, executor_worker_path)
if len(kwargs) > 0:
return trtllm.ParallelConfig(**kwargs)
return None
def get_peft_cache_config(self, model_config):
kwargs = {
"optimal_adapter_size":
get_parameter(model_config, "lora_cache_optimal_adapter_size",
int),
"max_adapter_size":
get_parameter(model_config, "lora_cache_max_adapter_size", int),
"device_cache_percent":
get_parameter(model_config, "lora_cache_gpu_memory_fraction",
float),
"host_cache_size":
get_parameter(model_config, "lora_cache_host_memory_bytes", int),
}
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.PeftCacheConfig(**kwargs)
def get_decoding_config(self, model_config):
eagle_choices = parse_eagle_choices(
get_parameter(model_config, "eagle_choices"))
kwargs = {
"medusa_choices":
parse_medusa_choices(get_parameter(model_config,
"medusa_choices")),
"eagle_config":
None
if eagle_choices is None else trtllm.EagleConfig(eagle_choices),
"decoding_mode":
convert_decoding_mode(get_parameter(model_config,
"decoding_mode")),
}
print(kwargs)
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.DecodingConfig(**kwargs)
def get_extended_runtime_perf_knob_config(self, model_config):
kwargs = {
"multi_block_mode":
get_parameter(model_config, "multi_block_mode", bool),
"enable_context_fmha_fp32_acc":
get_parameter(model_config, "enable_context_fmha_fp32_acc", bool),
"cuda_graph_mode":
get_parameter(model_config, "cuda_graph_mode", bool),
"cuda_graph_cache_size":
get_parameter(model_config, "cuda_graph_cache_size", int),
}
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.ExtendedRuntimePerfKnobConfig(**kwargs)
def get_guided_decoding_config(self, model_config):
guided_decoding_backend = get_parameter(model_config,
"guided_decoding_backend", str)
tokenizer_dir = get_parameter(model_config, "tokenizer_dir", str)
if guided_decoding_backend not in ['xgrammar']:
if tokenizer_dir:
pb_utils.Logger.log_warn(
f"Guided decoding backend has not been set but tokenizer_dir is given. Tokenizer_dir will be ignored."
)
return None
if guided_decoding_backend == 'xgrammar':
guided_decoding_backend = trtllm.GuidedDecodingConfig.GuidedDecodingBackend.XGRAMMAR
if not tokenizer_dir:
raise ValueError(
"Guided decoding requires tokenizer's information. Please provide 'tokenizer_dir'."
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
pb_utils.Logger.log_info(
f"Guided decoding has been set with {guided_decoding_backend} backend"
)
return trtllm.GuidedDecodingConfig(
backend=guided_decoding_backend,
**_xgrammar_tokenizer_info(tokenizer))
def get_executor_config(self, model_config):
kwargs = {
"max_beam_width":
get_parameter(model_config, "max_beam_width", int),
"scheduler_config":
self.get_scheduler_config(model_config),
"kv_cache_config":
self.get_kv_cache_config(model_config),
"enable_chunked_context":
get_parameter(model_config, "enable_chunked_context", bool),
"normalize_log_probs":
get_parameter(model_config, "normalize_log_probs", bool),
"batching_type":
convert_batching_type(get_parameter(model_config,
"gpt_model_type")),
"parallel_config":
self.get_parallel_config(model_config),
"peft_cache_config":
self.get_peft_cache_config(model_config),
"decoding_config":
self.get_decoding_config(model_config),
"max_queue_size":
model_config.get(
"dynamic_batching",
{},
).get(
"default_queue_policy",
{},
).get("max_queue_size"),
"extended_runtime_perf_knob_config":
self.get_extended_runtime_perf_knob_config(model_config),
"guided_decoding_config":
self.get_guided_decoding_config(model_config)
}
kwargs = {k: v for k, v in kwargs.items() if v is not None}
return trtllm.ExecutorConfig(**kwargs)
def create_metrics(self, model: str, version: str, is_v1_model: bool):
self.request_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_request_metrics",
description="TRT LLM request metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
self.runtime_memory_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_runtime_memory_metrics",
description="TRT LLM runtime memory metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
self.kv_cache_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_kv_cache_block_metrics",
description="TRT LLM KV cache block metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
model_type = "v1" if is_v1_model else "inflight_batcher"
self.model_type_metric_family = pb_utils.MetricFamily(
name=f"nv_trt_llm_{model_type}_metrics",
description=f"TRT LLM {model_type}-specific metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
self.general_metric_family = pb_utils.MetricFamily(
name="nv_trt_llm_general_metrics",
description="General TRT LLM metrics",
kind=pb_utils.MetricFamily.GAUGE,
)
# Set the metric using self.general_metric_output_family.observe(string_size)
self.request_tokens_metric_family = pb_utils.MetricFamily(
name="nv_llm_input_token_len",
description="TRT LLM response metrics",
kind=pb_utils.MetricFamily.HISTOGRAM,
)
self.response_tokens_metric_family = pb_utils.MetricFamily(
name="nv_llm_output_token_len",
description="TRT LLM response metrics",
kind=pb_utils.MetricFamily.HISTOGRAM,
)
common_labels = {"model": model, "version": version}
self.all_metrics = {
# Request metrics
"num_active_requests":
self.request_metric_family.Metric(labels={
"request_type": "active",
**common_labels
}),
"max_num_active_requests":
self.request_metric_family.Metric(labels={
"request_type": "max",
**common_labels
}),
"num_scheduled_requests":
self.request_metric_family.Metric(labels={
"request_type": "scheduled",
**common_labels
}),
"num_context_requests":
self.request_metric_family.Metric(labels={
"request_type": "context",
**common_labels
}),
# Runtime metrics
"cpu_mem_usage":
self.runtime_memory_metric_family.Metric(labels={
"memory_type": "cpu",
**common_labels
}),
"gpu_mem_usage":
self.runtime_memory_metric_family.Metric(labels={
"memory_type": "gpu",
**common_labels
}),
"pinned_mem_usage":
self.runtime_memory_metric_family.Metric(labels={
"memory_type": "pinned",
**common_labels
}),
# KV cache metrics
"max_num_blocks":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "max",
**common_labels
}),
"free_num_blocks":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "free",
**common_labels
}),
"used_num_blocks":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "used",
**common_labels
}),
"tokens_per_block":
self.kv_cache_metric_family.Metric(labels={
"kv_cache_block_type": "tokens_per",
**common_labels
}),
# General metrics
"timestamp":
self.general_metric_family.Metric(labels={
"general_type": "timestamp",
**common_labels
}),
"iter":
self.general_metric_family.Metric(labels={
"general_type": "iteration_counter",
**common_labels
}),
METRIC_TOTAL_OUTPUT_TOKENS:
self.response_tokens_metric_family.Metric(
labels={
"response_metric_type": METRIC_TOTAL_OUTPUT_TOKENS,
**common_labels
},
buckets=build_1_2_5_buckets(1000)),
METRIC_TOTAL_INPUT_TOKENS:
self.request_tokens_metric_family.Metric(
labels={
"response_metric_type": METRIC_TOTAL_INPUT_TOKENS,
**common_labels
},
buckets=build_1_2_5_buckets(1000)),
}
if is_v1_model:
self.all_metrics.update({
"num_ctx_tokens":
self.model_type_metric_family.Metric(labels={
"v1_specific_metric": "total_context_tokens",
**common_labels
}),
"num_gen_tokens":
self.model_type_metric_family.Metric(
labels={
"v1_specific_metric": "total_generation_tokens",
**common_labels
}),
"empty_gen_slots":
self.model_type_metric_family.Metric(
labels={
"v1_specific_metric": "empty_generation_slots",
**common_labels
}),
})
else:
self.all_metrics.update({
"num_ctx_tokens":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric":
"total_context_tokens",
**common_labels
}),
"num_gen_requests":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric":
"generation_requests",
**common_labels
}),
"micro_batch_id":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric": "micro_batch_id",
**common_labels
}),
"num_paused_requests":
self.model_type_metric_family.Metric(
labels={
"inflight_batcher_specific_metric": "paused_requests",
**common_labels
}),
})
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
model_config = json.loads(args['model_config'])
gpt_model_path = get_parameter(model_config, "gpt_model_path")
if get_parameter(model_config, "enable_trt_overlap", bool):
raise pb_utils.TritonModelException(
f"enable_trt_overlap=true is not supported.")
self.exclude_input_from_output = get_parameter(
model_config, "exclude_input_in_output", bool)
executor_config = self.get_executor_config(model_config)
self.executor = trtllm.Executor(gpt_model_path,
trtllm.ModelType.DECODER_ONLY,
executor_config)
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(
model_config)
self.cancellation_check_period_ms = get_parameter(
model_config, "cancellation_check_period_ms", int) or 100
self.stats_check_period_ms = get_parameter(
model_config, "stats_check_period_ms", int) or 100
self.logits_dtype = None
for output in model_config['output']:
if output['name'] == 'context_logits' or output[
'name'] == 'generation_logits':
self.logits_dtype = triton_string_to_torch(output['data_type'])
self.create_metrics(args["model_name"],
args["model_version"],
is_v1_model=executor_config.batching_type ==
trtllm.BatchingType.STATIC)
self.triton_user_id_to_req_ids = {}
self.triton_req_id_to_req_ids = {}
self.req_id_to_request_data = {}
self.lock = Lock()
self.running = False
self.awaiter_thread = Thread(target=self.awaiter_loop)
self.cancellation_thread = Thread(target=self.cancellation_loop)
self.metrics_thread = Thread(target=self.metrics_loop)
if self.executor.can_enqueue_requests():
self.running = True
self.awaiter_thread.start()
self.cancellation_thread.start()
self.metrics_thread.start()
else:
# In leader mode, worker ranks will wait here until leader is done.
self.executor.shutdown()
def handle_stop_request(self, triton_user_id, response_sender):
if triton_user_id is None or triton_user_id == "":
response_sender.send(
pb_utils.InferenceResponse(error=pb_utils.TritonError(
"A request id must be provided for request cancellation")),
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
return
with self.lock:
if triton_user_id in self.triton_user_id_to_req_ids:
req_ids = self.triton_user_id_to_req_ids[triton_user_id]
for req_id in req_ids:
self.executor.cancel_request(req_id)
response_sender.send(
pb_utils.InferenceResponse(),
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
if not self.executor.can_enqueue_requests():
return
# Convert to executor requests.
triton_requests = []
executor_requests = []
batch_indices = []
triton_user_ids = []
triton_req_ids = []
for request in requests:
triton_user_id = request.request_id()
response_sender = request.get_response_sender()
stop = get_input_scalar_by_name(request, 'stop')
if stop:
self.handle_stop_request(triton_user_id, response_sender)
else:
#Unique request id used to identify each triton request
triton_req_id = str(randint(0, sys.maxsize))
self.triton_req_id_to_req_ids[triton_req_id] = set()
if triton_user_id is not None and triton_user_id != "":
self.triton_user_id_to_req_ids[triton_user_id] = set()
try:
converted_reqs = convert_request(
request, self.exclude_input_from_output,
self.decoupled)
except Exception as e:
response_sender.send(
pb_utils.InferenceResponse(error=pb_utils.TritonError(
f"An error occurred when processing the input values for request id {request.request_id()}, the error was '{e}'"
)),
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
else:
for batch_index, converted_req in enumerate(
converted_reqs):
triton_requests.append(request)
executor_requests.append(converted_req)
triton_user_ids.append(triton_user_id)
triton_req_ids.append(triton_req_id)
batch_indices.append(batch_index)
with self.lock:
request_ids = self.executor.enqueue_requests(executor_requests)
for req_id, triton_req_id, triton_user_id, executor_request, triton_request, batch_index in zip(
request_ids, triton_req_ids, triton_user_ids,
executor_requests, triton_requests, batch_indices):
self.req_id_to_request_data[req_id] = RequestData(
triton_req_id, triton_user_id, batch_index,
len(batch_indices),
executor_request.sampling_config.num_return_sequences, 0,
0, triton_request.get_response_sender())
self.triton_req_id_to_req_ids[triton_req_id].add(req_id)
input_len = len(
executor_request.input_token_ids
) if executor_request.input_token_ids is not None else 0
self.req_id_to_request_data[
req_id].num_input_tokens += input_len
# This checks both request level and instance config level
if executor_request.output_config.exclude_input_from_output == False and executor_request.streaming == False:
self.req_id_to_request_data[
req_id].num_output_tokens -= self.req_id_to_request_data[
req_id].num_input_tokens * executor_request.sampling_config.beam_width
if triton_user_id is not None and triton_user_id != "":
self.triton_user_id_to_req_ids[triton_user_id].add(req_id)
return None
def awaiter_loop(self):
"""Gets responses from executor and returns the results."""
while self.running:
for response in self.executor.await_responses(
timeout=datetime.timedelta(milliseconds=1)):
req_id = response.request_id
request_data = None
with self.lock:
if req_id not in self.req_id_to_request_data:
continue
request_data = self.req_id_to_request_data[req_id]
triton_response, is_final, output_length = convert_response(
response, request_data.batch_index,
request_data.batch_size, request_data.num_return_sequences,
self.logits_dtype)
with self.lock:
self.req_id_to_request_data[
req_id].num_output_tokens += output_length
triton_request_final = False
if is_final:
with self.lock:
# Check if all executor requests part of that triton request are finished
self.triton_req_id_to_req_ids[
request_data.triton_req_id].remove(req_id)
if len(self.triton_req_id_to_req_ids[
request_data.triton_req_id]) == 0:
pb_utils.Logger.log_info(
f"DELETING Req id {req_id}, triton_req_id {request_data.triton_req_id} "
)
triton_request_final = True
del self.triton_req_id_to_req_ids[
request_data.triton_req_id]
if request_data.triton_user_id is not None and request_data.triton_user_id != "":
del self.triton_user_id_to_req_ids[
request_data.triton_user_id]
self.update_metrics_per_request(req_id)
del self.req_id_to_request_data[req_id]
request_data.response_sender.send(
triton_response,
flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL
if triton_request_final else 0)
def cancellation_loop(self):
"""Checks if any pending requests have been cancelled."""
while self.running:
time.sleep(self.cancellation_check_period_ms / 1000.0)
with self.lock:
for req_id, request_data in self.req_id_to_request_data.items(
):
if request_data.response_sender.is_cancelled():
self.executor.cancel_request(req_id)
def update_metrics_per_request(self, req_id):
"""Updates triton metrics after completing one request"""
output_tokens = self.req_id_to_request_data[req_id].num_output_tokens
input_tokens = self.req_id_to_request_data[req_id].num_input_tokens
self.all_metrics[METRIC_TOTAL_OUTPUT_TOKENS].observe(output_tokens)
self.all_metrics[METRIC_TOTAL_INPUT_TOKENS].observe(input_tokens)
def metrics_loop(self):
"""Updates triton metrics using stats from the executor."""
while self.running:
time.sleep(self.stats_check_period_ms / 1000.0)
for stat in self.executor.get_latest_iteration_stats():
try:
for key, metric in self.all_metrics.items():
# Skip processing for both histogram metrics
if isinstance(key, str) and key in [
METRIC_TOTAL_OUTPUT_TOKENS,
METRIC_TOTAL_INPUT_TOKENS
]:
continue
value = None
if hasattr(stat, key):
value = getattr(stat, key)
elif stat.kv_cache_stats is not None and hasattr(
stat.kv_cache_stats, key):
value = getattr(stat.kv_cache_stats, key)
elif stat.static_batching_stats is not None and hasattr(
stat.static_batching_stats, key):
value = getattr(stat.static_batching_stats, key)
elif stat.inflight_batching_stats is not None and hasattr(
stat.inflight_batching_stats, key):
value = getattr(stat.inflight_batching_stats, key)
if value is not None:
if key == "timestamp":
value = convert_timestamp_to_seconds(value)
metric.set(value)
else:
pb_utils.Logger.log_warn(
f"Metric \"{key}\" not found.")
except Exception as e:
pb_utils.Logger.log_warn(
f"Error while processing metrics: {e}")
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
if self.executor.can_enqueue_requests():
self.running = False
self.awaiter_thread.join()
self.cancellation_thread.join()
self.metrics_thread.join()
self.executor.shutdown()
|