File size: 8,694 Bytes
a2eca76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

name: "tensorrt_llm_bls"
backend: "python"
max_batch_size: 32

model_transaction_policy {
  decoupled: True
}

input [
  {
    name: "text_input"
    data_type: TYPE_STRING
    dims: [ 1 ]
  },
  {
    name: "decoder_text_input"
    data_type: TYPE_STRING
    dims: [ 1 ]
    optional: true
  },
  {
    name: "image_input"
    data_type: TYPE_FP16
    dims: [ -1, 3, -1, -1 ]
    optional: true
  },
  {
    name: "image_bytes_input"
    data_type: TYPE_UINT8
    dims: [ -1, -1, -1, -1 ]
    optional: true
  },
  {
    name: "image_url_input"
    data_type: TYPE_STRING
    dims: [ 1 ]
    optional: true
  },
  {
    name: "video_bytes_input"
    data_type: TYPE_UINT8
    dims: [ -1, -1, -1, -1 ]
    optional: true
  },
  {
    name: "max_tokens"
    data_type: TYPE_INT32
    dims: [ 1 ]
  },
  {
   name: "bad_words"
   data_type: TYPE_STRING
   dims: [ -1 ]
   optional: true
  },
  {
   name: "stop_words"
   data_type: TYPE_STRING
   dims: [ -1 ]
   optional: true
  },
  {
    name: "exclude_input_in_output"
    data_type: TYPE_BOOL
    dims: [ 1 ]
    optional: true
  },
  {
    name: "end_id"
    data_type: TYPE_INT32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "pad_id"
    data_type: TYPE_INT32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "top_k"
    data_type: TYPE_INT32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "top_p"
    data_type: TYPE_FP32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "temperature"
    data_type: TYPE_FP32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "length_penalty"
    data_type: TYPE_FP32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "repetition_penalty"
    data_type: TYPE_FP32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "min_length"
    data_type: TYPE_INT32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "presence_penalty"
    data_type: TYPE_FP32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "frequency_penalty"
    data_type: TYPE_FP32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "random_seed"
    data_type: TYPE_UINT64
    dims: [ 1 ]
    optional: true
  },
  {
    name: "return_log_probs"
    data_type: TYPE_BOOL
    dims: [ 1 ]
    reshape: { shape: [ ] }
    optional: true
  },
  {
    name: "return_context_logits"
    data_type: TYPE_BOOL
    dims: [ 1 ]
    reshape: { shape: [ ] }
    optional: true
  },
  {
    name: "return_generation_logits"
    data_type: TYPE_BOOL
    dims: [ 1 ]
    reshape: { shape: [ ] }
    optional: true
  },
  {
    name: "num_return_sequences"
    data_type: TYPE_INT32
    dims: [ 1 ]
    reshape: { shape: [ ] }
    optional: true
  },
  {
    name: "beam_width"
    data_type: TYPE_INT32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "stream"
    data_type: TYPE_BOOL
    dims: [ 1 ]
    optional: true
  },
  {
    name: "prompt_embedding_table"
    data_type: TYPE_FP16
    dims: [ -1, -1 ]
    optional: true
  },
  {
    name: "prompt_vocab_size"
    data_type: TYPE_INT32
    dims: [ 1 ]
    optional: true
  },
  {
    name: "prompt_table_extra_id"
    data_type: TYPE_UINT64
    dims: [ 1 ]
    optional: true
  },
  {
      name: "embedding_bias_words"
      data_type: TYPE_STRING
      dims: [ -1 ]
      optional: true
  },
  {
      name: "embedding_bias_weights"
      data_type: TYPE_FP32
      dims: [ -1 ]
      optional: true
  },
  {
      name: "num_draft_tokens",
      data_type: TYPE_INT32,
      dims: [ 1 ]
      optional: true
  },
  {
      name: "use_draft_logits",
      data_type: TYPE_BOOL,
      dims: [ 1 ]
      reshape: { shape: [ ] }
      optional: true
  },
  # the unique task ID for the given LoRA.
  # To perform inference with a specific LoRA for the first time `lora_task_id` `lora_weights` and `lora_config` must all be given.
  # The LoRA will be cached, so that subsequent requests for the same task only require `lora_task_id`.
  # If the cache is full the oldest LoRA will be evicted to make space for new ones.  An error is returned if `lora_task_id` is not cached.
  {
    name: "lora_task_id"
	data_type: TYPE_UINT64
	dims: [ 1 ]
    reshape: { shape: [ ] }
	optional: true
  },
  # weights for a lora adapter shape [ num_lora_modules_layers, D x Hi + Ho x D ]
  # where the last dimension holds the in / out adapter weights for the associated module (e.g. attn_qkv) and model layer
  # each of the in / out tensors are first flattened and then concatenated together in the format above.
  # D=adapter_size (R value), Hi=hidden_size_in, Ho=hidden_size_out.
  {
    name: "lora_weights"
	data_type: TYPE_FP16
	dims: [ -1, -1 ]
	optional: true
	allow_ragged_batch: true
  },
  # module identifier (same size a first dimension of lora_weights)
  # See LoraModule::ModuleType for model id mapping
  #
  # "attn_qkv": 0     # compbined qkv adapter
  # "attn_q": 1       # q adapter
  # "attn_k": 2       # k adapter
  # "attn_v": 3       # v adapter
  # "attn_dense": 4   # adapter for the dense layer in attention
  # "mlp_h_to_4h": 5  # for llama2 adapter for gated mlp layer after attention / RMSNorm: up projection
  # "mlp_4h_to_h": 6  # for llama2 adapter for gated mlp layer after attention / RMSNorm: down projection
  # "mlp_gate": 7     # for llama2 adapter for gated mlp later after attention / RMSNorm: gate
  #
  # last dim holds [ module_id, layer_idx, adapter_size (D aka R value) ]
  {
    name: "lora_config"
	data_type: TYPE_INT32
	dims: [ -1, 3 ]
	optional: true
	allow_ragged_batch: true
  },
  {
    name: "return_kv_cache_reuse_stats"
    data_type: TYPE_BOOL
    dims: [ 1 ]
    reshape: { shape: [ ] }
    optional: true
  },
  {
    name: "guided_decoding_guide_type"
    data_type: TYPE_STRING
    dims: [ 1 ]
    optional: true
  },
  {
    name: "guided_decoding_guide"
    data_type: TYPE_STRING
    dims: [ 1 ]
    optional: true
  }
]
output [
  {
    name: "text_output"
    data_type: TYPE_STRING
    dims: [ -1 ]
  },
  {
    name: "cum_log_probs"
    data_type: TYPE_FP32
    dims: [ -1 ]
  },
  {
    name: "output_log_probs"
    data_type: TYPE_FP32
    dims: [ -1, -1 ]
  },
  {
    name: "context_logits"
    data_type: TYPE_FP16
    dims: [ -1, -1 ]
  },
  {
    name: "generation_logits"
    data_type: TYPE_FP16
    dims: [ -1, -1, -1 ]
  },
  {
    name: "batch_index"
    data_type: TYPE_INT32
    dims: [ 1 ]
  },
  {
    name: "sequence_index"
    data_type: TYPE_INT32
    dims: [ 1 ]
  },
  {
    name: "kv_cache_alloc_new_blocks"
    data_type: TYPE_INT32
    dims: [ 1 ]
  },
  {
    name: "kv_cache_reused_blocks"
    data_type: TYPE_INT32
    dims: [ 1 ]
  },
  {
    name: "kv_cache_alloc_total_blocks"
    data_type: TYPE_INT32
    dims: [ 1 ]
  }
]

parameters: {
  key: "accumulate_tokens"
  value: {
    string_value: "${accumulate_tokens}"
  }
}
parameters: {
  key: "tensorrt_llm_model_name"
  value: {
    string_value: "tensorrt_llm"
  }
}
parameters: {
  key: "tensorrt_llm_draft_model_name"
  value: {
    string_value: "${tensorrt_llm_draft_model_name}"
  }
}
parameters: {
  key: "multimodal_encoders_name"
  value: {
    string_value: "${multimodal_encoders_name}"
  }
}

instance_group [
  {
    count: 1
    kind : KIND_CPU
  }
]