File size: 11,175 Bytes
aea8975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import json

import numpy as np
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer


class TritonPythonModel:
    """Your Python model must use the same class name. Every Python model
    that is created must have "TritonPythonModel" as the class name.
    """

    def initialize(self, args):
        """`initialize` is called only once when the model is being loaded.
        Implementing `initialize` function is optional. This function allows
        the model to initialize any state associated with this model.
        Parameters
        ----------
        args : dict
          Both keys and values are strings. The dictionary keys and values are:
          * model_config: A JSON string containing the model configuration
          * model_instance_kind: A string containing model instance kind
          * model_instance_device_id: A string containing model instance device ID
          * model_repository: Model repository path
          * model_version: Model version
          * model_name: Model name
        """
        # Parse model configs
        model_config = json.loads(args['model_config'])
        tokenizer_dir = model_config['parameters']['tokenizer_dir'][
            'string_value']

        skip_special_tokens = model_config['parameters'].get(
            'skip_special_tokens')
        if skip_special_tokens is not None:
            skip_special_tokens_str = skip_special_tokens[
                'string_value'].lower()
            if skip_special_tokens_str in [
                    'true', 'false', '1', '0', 't', 'f', 'y', 'n', 'yes', 'no'
            ]:
                self.skip_special_tokens = skip_special_tokens_str in [
                    'true', '1', 't', 'y', 'yes'
                ]
            else:
                print(
                    f"[TensorRT-LLM][WARNING] Don't setup 'skip_special_tokens' correctly (set value is {skip_special_tokens['string_value']}). Set it as True by default."
                )
                self.skip_special_tokens = True
        else:
            print(
                f"[TensorRT-LLM][WARNING] Don't setup 'skip_special_tokens'. Set it as True by default."
            )
            self.skip_special_tokens = True

        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
                                                       legacy=False,
                                                       padding_side='left',
                                                       trust_remote_code=True)
        if not self.tokenizer.pad_token:
            self.tokenizer.pad_token = self.tokenizer.eos_token

        # Parse model output configs
        output_config = pb_utils.get_output_config_by_name(
            model_config, "OUTPUT")

        # Convert Triton types to numpy types
        self.output_dtype = pb_utils.triton_string_to_numpy(
            output_config['data_type'])

    def execute(self, requests):
        """`execute` must be implemented in every Python model. `execute`
        function receives a list of pb_utils.InferenceRequest as the only
        argument. This function is called when an inference is requested
        for this model. Depending on the batching configuration (e.g. Dynamic
        Batching) used, `requests` may contain multiple requests. Every
        Python model, must create one pb_utils.InferenceResponse for every
        pb_utils.InferenceRequest in `requests`. If there is an error, you can
        set the error argument when creating a pb_utils.InferenceResponse.
        Parameters
        ----------
        requests : list
          A list of pb_utils.InferenceRequest
        Returns
        -------
        list
          A list of pb_utils.InferenceResponse. The length of this list must
          be the same as `requests`
        """

        responses = []

        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        for idx, request in enumerate(requests):
            # Get input tensors
            tokens_batch = pb_utils.get_input_tensor_by_name(
                request, 'TOKENS_BATCH').as_numpy()

            # Get sequence length
            sequence_lengths = pb_utils.get_input_tensor_by_name(
                request, 'SEQUENCE_LENGTH').as_numpy()

            # Get cum log probs
            cum_log_probs = pb_utils.get_input_tensor_by_name(
                request, 'CUM_LOG_PROBS')

            # Get sequence length
            output_log_probs = pb_utils.get_input_tensor_by_name(
                request, 'OUTPUT_LOG_PROBS')

            # Get context logits
            context_logits = pb_utils.get_input_tensor_by_name(
                request, 'CONTEXT_LOGITS')

            # Get generation logits
            generation_logits = pb_utils.get_input_tensor_by_name(
                request, 'GENERATION_LOGITS')

            # Get the batch index
            batch_index = pb_utils.get_input_tensor_by_name(
                request, 'BATCH_INDEX')

            # Reshape Input
            # tokens_batch = tokens_batch.reshape([-1, tokens_batch.shape[0]])
            # tokens_batch = tokens_batch.T

            # Postprocessing output data.
            outputs = self._postprocessing(tokens_batch, sequence_lengths)

            # Create output tensors. You need pb_utils.Tensor
            # objects to create pb_utils.InferenceResponse.
            output_tensor = pb_utils.Tensor(
                'OUTPUT',
                np.array(outputs).astype(self.output_dtype))

            outputs = []
            outputs.append(output_tensor)

            if cum_log_probs:
                out_cum_log_probs = pb_utils.Tensor('OUT_CUM_LOG_PROBS',
                                                    cum_log_probs.as_numpy())
                outputs.append(out_cum_log_probs)
            else:
                out_cum_log_probs = pb_utils.Tensor(
                    'OUT_CUM_LOG_PROBS', np.array([[0.0]], dtype=np.float32))
                outputs.append(out_cum_log_probs)

            if output_log_probs:
                out_output_log_probs = pb_utils.Tensor(
                    'OUT_OUTPUT_LOG_PROBS', output_log_probs.as_numpy())
                outputs.append(out_output_log_probs)
            else:
                out_output_log_probs = pb_utils.Tensor(
                    'OUT_OUTPUT_LOG_PROBS',
                    np.array([[[0.0]]], dtype=np.float32))
                outputs.append(out_output_log_probs)

            if context_logits:
                out_context_logits = pb_utils.Tensor('OUT_CONTEXT_LOGITS',
                                                     context_logits.as_numpy())
                outputs.append(out_context_logits)
            else:
                out_context_logits = pb_utils.Tensor(
                    'OUT_CONTEXT_LOGITS', np.array([[[0.0]]],
                                                   dtype=np.float32))
                outputs.append(out_context_logits)

            if generation_logits:
                out_generation_logits = pb_utils.Tensor(
                    'OUT_GENERATION_LOGITS', generation_logits.as_numpy())
                outputs.append(out_generation_logits)
            else:
                out_generation_logits = pb_utils.Tensor(
                    'OUT_GENERATION_LOGITS',
                    np.array([[[[0.0]]]], dtype=np.float32))
                outputs.append(out_generation_logits)

            if batch_index:
                out_batch_index = pb_utils.Tensor('OUT_BATCH_INDEX',
                                                  batch_index.as_numpy())
                outputs.append(out_batch_index)
            else:
                out_batch_index = pb_utils.Tensor(
                    'OUT_BATCH_INDEX', np.array([[0]], dtype=np.int32))
                outputs.append(out_batch_index)

            # Create InferenceResponse. You can set an error here in case
            # there was a problem with handling this inference request.
            # Below is an example of how you can set errors in inference
            # response:
            #
            # pb_utils.InferenceResponse(
            #    output_tensors=..., TritonError("An error occurred"))
            inference_response = pb_utils.InferenceResponse(
                output_tensors=outputs)
            responses.append(inference_response)

        # You should return a list of pb_utils.InferenceResponse. Length
        # of this list must match the length of `requests` list.
        return responses

    def finalize(self):
        """`finalize` is called only once when the model is being unloaded.
        Implementing `finalize` function is optional. This function allows
        the model to perform any necessary clean ups before exit.
        """
        print('Cleaning up...')

    def _postprocessing(self, tokens_batch, sequence_lengths):
        outputs = []
        for batch_idx, beam_tokens in enumerate(tokens_batch):
            for beam_idx, tokens in enumerate(beam_tokens):
                seq_len = sequence_lengths[batch_idx][beam_idx]
                # Exclude fake ids in multimodal models
                fake_id_len = 0
                for i in range(seq_len):
                    if tokens[i] < self.tokenizer.vocab_size:
                        fake_id_len = i
                        break
                output = self.tokenizer.decode(
                    tokens[fake_id_len:seq_len],
                    skip_special_tokens=self.skip_special_tokens)
                outputs.append(output.encode('utf8'))
        return outputs