otherhalf-dev's picture
Upload folder using huggingface_hub
7567662 verified
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from collections.abc import Generator
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
class RequestValidationError(Exception):
pass
def _validate_that(condition: bool, msg: str):
if not condition:
raise RequestValidationError(msg)
def _validate_non_empty(data, msg: str):
if isinstance(data, torch.Tensor):
_validate_that(data is not None and data.numel() > 0, msg)
else:
_validate_that(data is not None and data.size > 0, msg)
def _validate_single_gt_0(data, msg: str):
_validate_non_empty(data, msg)
_validate_that(data.flatten()[0] > 0, msg)
def _single_value(data: Optional[np.ndarray]):
if data is None:
return None
return data.flatten()[0]
@dataclass
class Request:
text_input: np.ndarray = np.array([])
decoder_text_input: np.ndarray = None
image_input: Optional[np.ndarray] = None
max_tokens: Optional[np.ndarray] = None
bad_words: Optional[np.ndarray] = None
stop_words: Optional[np.ndarray] = None
end_id: Optional[np.ndarray] = None
pad_id: Optional[np.ndarray] = None
top_k: Optional[np.ndarray] = None
top_p: Optional[np.ndarray] = None
temperature: Optional[np.ndarray] = None
length_penalty: Optional[np.ndarray] = None
repetition_penalty: Optional[np.ndarray] = None
min_length: Optional[np.ndarray] = None
return_log_probs: Optional[np.ndarray] = None
prompt_embedding_table: Optional[np.ndarray] = None
prompt_vocab_size: Optional[np.ndarray] = None
embedding_bias_words: Optional[np.ndarray] = None
embedding_bias_weights: Optional[np.ndarray] = None
num_draft_tokens: Optional[np.ndarray] = None
use_draft_logits: Optional[np.ndarray] = None
stream: Optional[np.ndarray] = None
beam_width: Optional[np.ndarray] = None
return_context_logits: Optional[np.ndarray] = None
return_generation_logits: Optional[np.ndarray] = None
random_seed: Optional[np.ndarray] = None
presence_penalty: Optional[np.ndarray] = None
frequency_penalty: Optional[np.ndarray] = None
def validate(self):
_validate_non_empty(self.text_input, "text_input is required")
_validate_single_gt_0(self.max_tokens,
"max_tokens must be a single value > 0")
num_draft_tokens = _single_value(self.num_draft_tokens)
_single_value(self.return_generation_logits)
context_logits = _single_value(self.return_context_logits)
if num_draft_tokens:
_validate_that(
not self.stream.any(),
"streaming is not supported with speculative decoding")
_validate_that(
not context_logits,
"context logits are not supported with speculative decoding")
@dataclass
class DraftRequest:
draft_input_ids: Optional[np.ndarray] = None
draft_logits: Optional[np.ndarray] = None
@dataclass
class PreprocResponse:
input_ids: np.ndarray = np.array([])
decoder_input_ids: np.ndarray = None
input_lengths: np.ndarray = np.array([])
decoder_input_lengths: np.ndarray = None
bad_words_list: Optional[np.ndarray] = None
stop_words_list: Optional[np.ndarray] = None
embedding_bias: Optional[np.ndarray] = None
end_id: Optional[np.ndarray] = None
pad_id: Optional[np.ndarray] = None
@classmethod
def with_new_inputs(cls,
other,
input_ids: Optional[np.ndarray] = None,
input_lengths: Optional[np.ndarray] = None):
return cls(input_ids=(input_ids
if input_ids is not None else other.input_ids),
input_lengths=(input_lengths if input_lengths is not None
else other.input_lengths),
decoder_input_ids=other.decoder_input_ids,
decoder_input_lengths=other.decoder_input_lengths,
bad_words_list=other.bad_words_list,
stop_words_list=other.stop_words_list,
end_id=other.end_id,
pad_id=other.pad_id)
@dataclass
class MultimodalEncResponse:
prompt_embedding_table: Optional[torch.Tensor] = None
prompt_vocab_size: Optional[np.ndarray] = None
@dataclass
class GenerationResponse:
output_ids: np.ndarray = np.array([])
sequence_length: np.ndarray = np.array([])
cum_log_probs: Optional[np.ndarray] = None
output_log_probs: Optional[np.ndarray] = None
context_logits: Optional[np.ndarray] = None
generation_logits: Optional[np.ndarray] = None
batch_index: Optional[np.ndarray] = None
@dataclass
class Response:
text_output: np.ndarray = np.array([])
cum_log_probs: Optional[np.ndarray] = None
output_log_probs: Optional[np.ndarray] = None
context_logits: Optional[np.ndarray] = None
generation_logits: Optional[np.ndarray] = None
batch_index: Optional[np.ndarray] = None
def __eq__(self, o) -> bool:
"""Just for testing"""
if not isinstance(o, Response):
return False
return (np.array_equal(self.text_output, o.text_output)
and np.array_equal(self.cum_log_probs, o.cum_log_probs)
and np.array_equal(self.output_log_probs, o.output_log_probs)
and np.array_equal(self.context_logits, o.context_logits)
and np.array_equal(self.generation_logits, o.generation_logits)
and np.array_equal(self.batch_index, o.batch_index))
class Decoder:
def __init__(self, streaming=False, accumulate=False):
self._streaming = streaming
self._accumulate = accumulate
self._accumulated_tokens = []
def decode(self,
request: Request,
speculative_decoding=False,
is_multimodal=False) -> Generator[Response, None, None]:
batch_size = request.text_input.shape[0]
self._accumulated_tokens = [None] * batch_size
preproc_response = self.preprocess(request)
multimodal_enc_response = None
if is_multimodal:
multimodal_enc_response = self._multimodal_enc_generate(request)
if speculative_decoding:
if batch_size > 1:
raise Exception(
"speculative decoding is not supported with batch size > 1"
)
for gen_response in self._spec_generate(preproc_response, request):
yield self.postprocess(gen_response, batch_size)
else:
if not self._streaming and batch_size == 1:
gen_response = self._generate_non_streaming(
preproc_response,
request,
multimodal_enc_response=multimodal_enc_response)
yield self.postprocess(gen_response, batch_size)
else:
for gen_response in self._generate(
preproc_response,
request,
multimodal_enc_response=multimodal_enc_response):
yield self.postprocess(gen_response, batch_size)
def encountered_stop_words(self, input_ids, stop_words_ids):
for stop_word_ids in stop_words_ids:
if np.array_equal(input_ids[-len(stop_word_ids):], stop_word_ids):
return True
return False
def _spec_generate(
self, preproc: PreprocResponse,
request: Request) -> Generator[GenerationResponse, None, None]:
if preproc.input_ids.shape[0] > 1:
raise Exception(
"Speculative decoding does not support batch size > 1.")
prompt_input_ids: np.ndarray = preproc.input_ids[0]
input_ids: np.ndarray = prompt_input_ids
output_len: int = request.max_tokens[0][0]
last_input_ids: np.ndarray = None
draft_output_ids: np.ndarray = None
draft_logits: np.ndarray = None
target_response: GenerationResponse = None
cur_preproc = preproc
counter = 0
while True:
counter += 1
num_draft_tokens = min(
request.num_draft_tokens[0][0],
len(prompt_input_ids) + output_len - len(input_ids) - 1)
draft_request = None
if num_draft_tokens > 0:
draft_response: GenerationResponse = self._draft_generate_non_streaming(
cur_preproc, request, num_draft_tokens)
seq_len: int = draft_response.sequence_length[0][0]
# [1, beamWidth, outputLength] -> [outputLen]
draft_output_ids = draft_response.output_ids[0][0]
# [1, beamWidth, outputLength, vocabSizePadded] -> [outputLength, vocabSizePadded]
if request.use_draft_logits is not None and request.use_draft_logits[
0]:
if draft_response.generation_logits is not None:
draft_logits = draft_response.generation_logits[0][0]
input_draft_tokens = draft_output_ids[len(input_ids):seq_len]
draft_request = DraftRequest(
draft_input_ids=np.expand_dims(input_draft_tokens, 0))
if request.use_draft_logits is not None and request.use_draft_logits[
0]:
draft_request.draft_logits = np.expand_dims(
draft_logits[-len(input_draft_tokens):], 0)
else:
draft_request = DraftRequest()
target_response = self._generate_non_streaming(
cur_preproc, request, draft_request)
last_input_ids = input_ids
input_ids = target_response.output_ids[0][0]
cur_preproc = PreprocResponse.with_new_inputs(
cur_preproc, np.expand_dims(input_ids, 0),
np.array([[len(input_ids)]], dtype=np.int32))
# Evaluate criteria to stop generation loop.
# If we've hit or exceeded the max output length, should stop
length_stop = (len(input_ids) >=
len(prompt_input_ids) + output_len)
if length_stop:
break
# If draft and target have same outputs, should stop. Normally target should return 1 more token.
# If they are the same length, they should differ at the last token
target_draft_equal = draft_output_ids is not None and np.array_equal(
draft_output_ids, input_ids)
if target_draft_equal:
break
# If tokens no longer change, should stop, means we have hit early stopping
last_current_equal = np.array_equal(last_input_ids, input_ids)
if last_current_equal:
break
# Need to check if stop words was encountered
hit_stop_words = self.encountered_stop_words(
input_ids, preproc.stop_words_list[0])
if hit_stop_words:
break
yield target_response
def _draft_generate_non_streaming(
self, preproc: PreprocResponse, request: Request,
num_draft_tokens: int) -> GenerationResponse:
raise NotImplementedError()
def _multimodal_enc_generate(
self,
request: Request,
) -> MultimodalEncResponse:
raise NotImplementedError()
def _generate(
self,
preproc: PreprocResponse,
request: Request,
draft_request: Optional[DraftRequest] = None,
multimodal_enc_response: Optional[MultimodalEncResponse] = None,
) -> Generator[GenerationResponse, None, None]:
raise NotImplementedError()
def _generate_non_streaming(
self,
preproc: PreprocResponse,
request: Request,
draft_request: Optional[DraftRequest] = None,
multimodal_enc_response: Optional[MultimodalEncResponse] = None,
) -> GenerationResponse:
raise NotImplementedError()
def postprocess(self, gen_response: GenerationResponse,
batch_size) -> Response:
if self._accumulate and self._streaming:
new_tokens: np.ndarray = gen_response.output_ids
if new_tokens.ndim != 3:
raise Exception("Expected output_ids tensor to have 3 dims.")
if new_tokens.shape[0] != 1:
raise Exception("Expected batch size of 1")
if new_tokens.shape[1] != 1:
raise Exception(
"Accumulation of tokens is only implemented for beam width = 1"
)
batch_index = gen_response.batch_index
if batch_index.ndim != 2:
raise Exception("Expected batch_index tensor to have 2 dims.")
if batch_index.shape[0] != 1:
raise Exception("Expected batch size of 1")
if batch_index.shape[1] != 1:
raise Exception("Expected only one batch_index")
batch_index = batch_index[0][0]
self._accumulated_tokens[batch_index] = new_tokens if (
self._accumulated_tokens[batch_index] is None
) else np.concatenate(
(self._accumulated_tokens[batch_index], new_tokens), axis=2)
sequence_lengths = np.array(
[[self._accumulated_tokens[batch_index].shape[2]]],
dtype=np.int32)
return self._postprocess(self._accumulated_tokens[batch_index],
sequence_lengths, gen_response)
else:
return self._postprocess(gen_response.output_ids, None,
gen_response)
def _postprocess(self, tokens: np.ndarray,
sequence_lengths: Optional[np.ndarray],
gen_response: GenerationResponse) -> Response:
raise NotImplementedError()
def preprocess(self, request: Request) -> PreprocResponse:
raise NotImplementedError()
def reset_decoder(self):
self._accumulated_tokens = []