--- language: ary datasets: - mgb5 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Moroccan Arabic dialect by Othmane Rifki results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: MGB5 from ELDA and https://arabicspeech.org/ type: ELDA/mgb5_moroccan args: ary metrics: - name: Test WER type: wer value: 66.45 --- # Wav2Vec2-Large-XLSR-53-Moroccan Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [MGB5 Moroccan Arabic](http://www.islrn.org/resources/938-639-614-524-5/) kindly provided by [ELDA](http://www.elra.info/en/about/elda/) and [ArabicSpeech](https://arabicspeech.org/mgb5/). In order to have access to MGB5, please request it from ELDA. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import re import torch import librosa import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf dataset = load_dataset("ma_speech_corpus", split="test") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\'\\�]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " return batch dataset = dataset.map(remove_special_characters) dataset = dataset.select(range(10)) def speech_file_to_array_fn(batch): start, stop = batch['segment'].split('_') speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), stop=int(float(stop) * sampling_rate)) batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) batch["sampling_rate"] = 16_000 batch["target_text"] = batch["text"] return batch dataset = dataset.map( speech_file_to_array_fn ) def predict(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) return batch dataset = dataset.map(predict, batched=True, batch_size=32) for reference, predicted in zip(dataset["sentence"], dataset["predicted"]): print("reference:", reference) print("predicted:", predicted) print("--") ``` Here's the output: ``` reference: عشرين ألفريال الوحده وشي خمسميه دريال predicted: عشرين علف ريا لوحده وشي خمسميات ريال -- reference: واحد جوج تلاتة ربعه خمسة ستة predicted: غيحك تويش تتبة نتاست -- reference: هي هاديك غتجينا تقريبا ميه وسته وعشرين ألف ريال predicted: ياض كتجينا تقريبه ميه أو ستي و عشيناأفرين -- reference: ###والصرف ليبقا نجيب بيه الصالون فلهوندا... أهاه نديروها علاش لا؟... predicted: أواصرف ليبقا نجيب يه اصالون فالهندا أه نديروها علاش لا -- reference: ###صافي مشات... أنا أختي معندي مندير بهاد صداع الراس... predicted: صافي مشات أنا خصي معندي مندير بهاد داع راسك ف -- reference: خلصو ليا غير لكريدي ديالي وديرو ليعجبكوم predicted: خلصو ليا غير لكريدي ديالي أوديرو لي عجبكوم -- reference: أنا نتكلف يلاه لقى شي حاجه نشغل بيها راسي predicted: أنا نتكلف يالله لقا شي حاجه نشغل بيها راسي ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice. ```python import re import torch import librosa import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf eval_dataset = load_dataset("ma_speech_corpus", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\\'\\�]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " return batch eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) #eval_dataset = eval_dataset.select(range(100)) def speech_file_to_array_fn(batch): start, stop = batch['segment'].split('_') speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), stop=int(float(stop) * sampling_rate)) batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) batch["sampling_rate"] = 16_000 batch["target_text"] = batch["text"] return batch eval_dataset = eval_dataset.map( speech_file_to_array_fn, remove_columns=eval_dataset.column_names ) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = eval_dataset.map(evaluate, batched=True, batch_size=32) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"]))) ``` **Test Result**: 66.45 ## Training The [MGB5](http://www.islrn.org/resources/938-639-614-524-5/) `train`, `validation` datasets were used for training. The script used for training can be found [here](https://github.com/othrif/xlsr-wav2vec2)