komatani commited on
Commit
93370d2
·
1 Parent(s): 1c398c5

update README

Browse files
Files changed (1) hide show
  1. README.md +38 -0
README.md CHANGED
@@ -1,3 +1,41 @@
1
  ---
 
2
  license: cc-by-sa-4.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: ja
3
  license: cc-by-sa-4.0
4
+ datasets:
5
+ - wikipedia
6
+ - cc100
7
+ - Hazumi
8
  ---
9
+
10
+ # ouktlab/Hazumi-AffNeg-Classifier
11
+
12
+ ## Model description
13
+
14
+ This is a Japanese fine-tuned [BERT](https://github.com/google-research/bert) model trained on exchange data
15
+ (Yes/No questions from the system and corresponding user responses)
16
+ extracted from the multimodal dialogue corpus Hazumi.
17
+ The pre-trained BERT model used is [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3), released by Tohoku University.
18
+ For fine-tuning, the JNLI script from [JGLUE](https://github.com/yahoojapan/JGLUE) was employed.
19
+
20
+ ## Training procedure
21
+
22
+ This model was fine-tuned using the following script, which was borrowed from the JNLI script in JGLUE.
23
+
24
+ ```
25
+ python transformers-4.9.2/examples/pytorch/text-classification/run_glue.py \
26
+ --model_name_or_path tohoku-nlp/bert-base-japanese-v3 \
27
+ --metric_name wnli \
28
+ --do_train --do_eval --do_predict \
29
+ --max_seq_length 128 \
30
+ --per_device_train_batch_size 8 \
31
+ --learning_rate 5e-05 \
32
+ --num_train_epochs 4 \
33
+ --output_dir <output_dir> \
34
+ --train_file <train json file> \
35
+ --validation_file <train json file> \
36
+ --test_file <train json file> \
37
+ --use_fast_tokenizer False \
38
+ --evaluation_strategy epoch \
39
+ --save_steps 5000 \
40
+ --warmup_ratio 0.1
41
+ ```