File size: 9,152 Bytes
2f3b6c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
diff --git a/utils/loggers/__init__.py b/utils/loggers/__init__.py
index 9de1f22..93b9ba2 100644
--- a/utils/loggers/__init__.py
+++ b/utils/loggers/__init__.py
@@ -110,7 +110,7 @@ class Loggers():
         if clearml and 'clearml' in self.include:
             try:
                 self.clearml = ClearmlLogger(self.opt, self.hyp)
-            except Exception:
+            except Exception as e:
                 self.clearml = None
                 prefix = colorstr('ClearML: ')
                 LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.'
@@ -159,10 +159,11 @@ class Loggers():
             paths = self.save_dir.glob('*labels*.jpg')  # training labels
             if self.wandb:
                 self.wandb.log({'Labels': [wandb.Image(str(x), caption=x.name) for x in paths]})
-            # if self.clearml:
-            #    pass  # ClearML saves these images automatically using hooks
             if self.comet_logger:
                 self.comet_logger.on_pretrain_routine_end(paths)
+            if self.clearml:
+                for path in paths:
+                    self.clearml.log_plot(title=path.stem, plot_path=path)
 
     def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
         log_dict = dict(zip(self.keys[:3], vals))
@@ -289,6 +290,8 @@ class Loggers():
             self.wandb.finish_run()
 
         if self.clearml and not self.opt.evolve:
+            self.clearml.log_summary(dict(zip(self.keys[3:10], results)))
+            [self.clearml.log_plot(title=f.stem, plot_path=f) for f in files]
             self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
                                                   name='Best Model',
                                                   auto_delete_file=False)
@@ -303,6 +306,8 @@ class Loggers():
             self.wandb.wandb_run.config.update(params, allow_val_change=True)
         if self.comet_logger:
             self.comet_logger.on_params_update(params)
+        if self.clearml:
+            self.clearml.task.connect(params)
 
 
 class GenericLogger:
@@ -315,7 +320,7 @@ class GenericLogger:
         include:         loggers to include
     """
 
-    def __init__(self, opt, console_logger, include=('tb', 'wandb')):
+    def __init__(self, opt, console_logger, include=('tb', 'wandb', 'clearml')):
         # init default loggers
         self.save_dir = Path(opt.save_dir)
         self.include = include
@@ -333,6 +338,22 @@ class GenericLogger:
                                     config=opt)
         else:
             self.wandb = None
+        
+        if clearml and 'clearml' in self.include:
+            try:
+                # Hyp is not available in classification mode
+                if 'hyp' not in opt:
+                    hyp = {}
+                else:
+                    hyp = opt.hyp
+                self.clearml = ClearmlLogger(opt, hyp)
+            except Exception:
+                self.clearml = None
+                prefix = colorstr('ClearML: ')
+                LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.'
+                               f' See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme')
+        else:
+            self.clearml = None
 
     def log_metrics(self, metrics, epoch):
         # Log metrics dictionary to all loggers
@@ -349,6 +370,9 @@ class GenericLogger:
 
         if self.wandb:
             self.wandb.log(metrics, step=epoch)
+        
+        if self.clearml:
+            self.clearml.log_scalars(metrics, epoch)
 
     def log_images(self, files, name='Images', epoch=0):
         # Log images to all loggers
@@ -361,6 +385,12 @@ class GenericLogger:
 
         if self.wandb:
             self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
+        
+        if self.clearml:
+            if name == 'Results':
+                [self.clearml.log_plot(f.stem, f) for f in files]
+            else:
+                self.clearml.log_debug_samples(files, title=name)
 
     def log_graph(self, model, imgsz=(640, 640)):
         # Log model graph to all loggers
@@ -373,11 +403,17 @@ class GenericLogger:
             art = wandb.Artifact(name=f'run_{wandb.run.id}_model', type='model', metadata=metadata)
             art.add_file(str(model_path))
             wandb.log_artifact(art)
+        
+        if self.clearml:
+            self.clearml.log_model(model_path=model_path, model_name=model_path.stem)
 
     def update_params(self, params):
         # Update the parameters logged
         if self.wandb:
             wandb.run.config.update(params, allow_val_change=True)
+        
+        if self.clearml:
+            self.clearml.task.connect(params)
 
 
 def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
diff --git a/utils/loggers/clearml/clearml_utils.py b/utils/loggers/clearml/clearml_utils.py
index 2764abe..e7525da 100644
--- a/utils/loggers/clearml/clearml_utils.py
+++ b/utils/loggers/clearml/clearml_utils.py
@@ -3,6 +3,9 @@ import glob
 import re
 from pathlib import Path
 
+import matplotlib.image as mpimg
+import matplotlib.pyplot as plt
+
 import numpy as np
 import yaml
 
@@ -79,13 +82,16 @@ class ClearmlLogger:
         # Maximum number of images to log to clearML per epoch
         self.max_imgs_to_log_per_epoch = 16
         # Get the interval of epochs when bounding box images should be logged
-        self.bbox_interval = opt.bbox_interval
+        # Only for detection task though!
+        if 'bbox_interval' in opt:
+            self.bbox_interval = opt.bbox_interval
         self.clearml = clearml
         self.task = None
         self.data_dict = None
         if self.clearml:
             self.task = Task.init(
-                project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
+                # project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
+                project_name=opt.project if not str(opt.project).startswith('runs/') else 'YOLOv5',
                 task_name=opt.name if opt.name != 'exp' else 'Training',
                 tags=['YOLOv5'],
                 output_uri=True,
@@ -112,6 +118,53 @@ class ClearmlLogger:
                 # Set data to data_dict because wandb will crash without this information and opt is the best way
                 # to give it to them
                 opt.data = self.data_dict
+    
+    def log_scalars(self, metrics, epoch):
+        """
+        Log scalars/metrics to ClearML
+        arguments:
+        metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
+        epoch (int) iteration number for the current set of metrics
+        """
+        for k, v in metrics.items():
+            title, series = k.split('/')
+            self.task.get_logger().report_scalar(title, series, v, epoch)
+
+    def log_model(self, model_path, model_name, epoch=0):
+        """
+        Log model weights to ClearML
+        arguments:
+        model_path (PosixPath or str) Path to the model weights
+        model_name (str) Name of the model visible in ClearML
+        epoch (int) Iteration / epoch of the model weights
+        """
+        self.task.update_output_model(model_path=str(model_path),
+                                      name=model_name,
+                                      iteration=epoch,
+                                      auto_delete_file=False)
+
+    def log_summary(self, metrics):
+        """
+        Log final metrics to a summary table
+        arguments:
+        metrics (dict) Metrics in dict format: {"metrics/mAP": 0.8, ...}
+        """
+        for k, v in metrics.items():
+            self.task.get_logger().report_single_value(k, v)
+
+    def log_plot(self, title, plot_path):
+        """
+        Log image as plot in the plot section of ClearML
+        arguments:
+        title (str) Title of the plot
+        plot_path (PosixPath or str) Path to the saved image file
+        """
+        img = mpimg.imread(plot_path)
+        fig = plt.figure()
+        ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[])  # no ticks
+        ax.imshow(img)
+
+        self.task.get_logger().report_matplotlib_figure(title, "", figure=fig, report_interactive=False)
 
     def log_debug_samples(self, files, title='Debug Samples'):
         """
@@ -126,7 +179,8 @@ class ClearmlLogger:
                 it = re.search(r'_batch(\d+)', f.name)
                 iteration = int(it.groups()[0]) if it else 0
                 self.task.get_logger().report_image(title=title,
-                                                    series=f.name.replace(it.group(), ''),
+                                                    # series=f.name.replace(it.group(), ''),
+                                                    series=f.name.replace(f"_batch{iteration}", ''),
                                                     local_path=str(f),
                                                     iteration=iteration)