Upload pipeline.py
Browse files- pipeline.py +169 -0
pipeline.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
import itertools
|
4 |
+
from nltk import sent_tokenize
|
5 |
+
# import torch
|
6 |
+
import nltk
|
7 |
+
|
8 |
+
class PreTrainedPipeline():
|
9 |
+
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# IMPLEMENT_THIS
|
12 |
+
# Preload all the elements you are going to need at inference.
|
13 |
+
# For instance your model, processors, tokenizer that might be needed.
|
14 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
15 |
+
nltk.download('punkt')
|
16 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
18 |
+
|
19 |
+
self.model_type="t5"
|
20 |
+
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
self.device = "cpu"
|
22 |
+
|
23 |
+
self.model.to(self.device)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def __call__(self, inputs: str, max_words_per_answer: int = 3):
|
28 |
+
if len(inputs) == 0: return []
|
29 |
+
inputs = " ".join(inputs.split())
|
30 |
+
sents, answers = self._extract_answers(inputs)
|
31 |
+
flat_answers = list(itertools.chain(*answers))
|
32 |
+
|
33 |
+
if len(flat_answers) == 0:
|
34 |
+
return []
|
35 |
+
|
36 |
+
questions, qg_examples = self.prepare_and_generate_questions(sents, answers)
|
37 |
+
output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)]
|
38 |
+
output = self.clean_generated_QAs(output, max_words_per_answer)
|
39 |
+
return output
|
40 |
+
|
41 |
+
def prepare_and_generate_questions(self, sents, answers):
|
42 |
+
qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers)
|
43 |
+
|
44 |
+
qg_inputs = [example['source_text'] for example in qg_examples]
|
45 |
+
questions = self._generate_questions(qg_inputs)
|
46 |
+
return questions, qg_examples
|
47 |
+
|
48 |
+
|
49 |
+
def clean_answers_list_of_lists(self, answers):
|
50 |
+
clean_answers = []
|
51 |
+
for answer_list in answers:
|
52 |
+
answer_list = answer_list[:-1]
|
53 |
+
answer_list = list(set([a.strip() for a in answer_list]))
|
54 |
+
clean_answers.append(answer_list)
|
55 |
+
return clean_answers
|
56 |
+
|
57 |
+
|
58 |
+
def _extract_answers(self, context):
|
59 |
+
sents, inputs = self._prepare_inputs_for_ans_extraction(context)
|
60 |
+
inputs = self._tokenize(inputs, padding=True, truncation=True)
|
61 |
+
|
62 |
+
outs = self.model.generate(
|
63 |
+
input_ids=inputs['input_ids'].to(self.device),
|
64 |
+
attention_mask=inputs['attention_mask'].to(self.device),
|
65 |
+
max_length=32,
|
66 |
+
)
|
67 |
+
|
68 |
+
dec = [self.tokenizer.decode(ids, skip_special_tokens=False) for ids in outs]
|
69 |
+
answers = [item.split('<sep>') for item in dec]
|
70 |
+
|
71 |
+
answers = self.clean_answers_list_of_lists(answers)
|
72 |
+
|
73 |
+
return sents, answers
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
def _prepare_inputs_for_ans_extraction(self, text):
|
78 |
+
sents = sent_tokenize(text)
|
79 |
+
|
80 |
+
inputs = []
|
81 |
+
for i in range(len(sents)):
|
82 |
+
source_text = "extract answers:"
|
83 |
+
for j, sent in enumerate(sents):
|
84 |
+
if i == j:
|
85 |
+
sent = "<hl> %s <hl>" % sent
|
86 |
+
source_text = "%s %s" % (source_text, sent)
|
87 |
+
source_text = source_text.strip()
|
88 |
+
|
89 |
+
if self.model_type == "t5":
|
90 |
+
source_text = source_text + " </s>"
|
91 |
+
inputs.append(source_text)
|
92 |
+
|
93 |
+
return sents, inputs
|
94 |
+
|
95 |
+
def _tokenize(self,
|
96 |
+
inputs,
|
97 |
+
padding=True,
|
98 |
+
truncation=True,
|
99 |
+
add_special_tokens=True,
|
100 |
+
max_length=512
|
101 |
+
):
|
102 |
+
inputs = self.tokenizer.batch_encode_plus(
|
103 |
+
inputs,
|
104 |
+
max_length=max_length,
|
105 |
+
add_special_tokens=add_special_tokens,
|
106 |
+
truncation=truncation,
|
107 |
+
padding="max_length" if padding else False,
|
108 |
+
pad_to_max_length=padding,
|
109 |
+
return_tensors="pt"
|
110 |
+
)
|
111 |
+
return inputs
|
112 |
+
|
113 |
+
def _generate_questions(self, inputs):
|
114 |
+
inputs = self._tokenize(inputs, padding=True, truncation=True)
|
115 |
+
|
116 |
+
outs = self.model.generate(
|
117 |
+
input_ids=inputs['input_ids'].to(self.device),
|
118 |
+
attention_mask=inputs['attention_mask'].to(self.device),
|
119 |
+
max_length=32,
|
120 |
+
num_beams=4,
|
121 |
+
)
|
122 |
+
|
123 |
+
questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
|
124 |
+
return questions
|
125 |
+
|
126 |
+
def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers):
|
127 |
+
inputs = []
|
128 |
+
for i, answer in enumerate(answers):
|
129 |
+
if len(answer) == 0: continue
|
130 |
+
for answer_text in answer:
|
131 |
+
sent = sents[i]
|
132 |
+
sents_copy = sents[:]
|
133 |
+
answer_text = self.remove_pad(answer_text)
|
134 |
+
answer_text = answer_text.strip()
|
135 |
+
|
136 |
+
try:
|
137 |
+
ans_start_idx = sent.lower().index(answer_text.lower())
|
138 |
+
except ValueError:
|
139 |
+
# Means the answer is not in the sentence so we skip this one
|
140 |
+
continue
|
141 |
+
|
142 |
+
sent = f"{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}"
|
143 |
+
sents_copy[i] = sent
|
144 |
+
|
145 |
+
source_text = " ".join(sents_copy)
|
146 |
+
source_text = f"generate question: {source_text}"
|
147 |
+
if self.model_type == "t5":
|
148 |
+
source_text = source_text + " </s>"
|
149 |
+
|
150 |
+
inputs.append({"answer": answer_text, "source_text": source_text})
|
151 |
+
|
152 |
+
return inputs
|
153 |
+
|
154 |
+
def clean_generated_QAs(self, generated_QAs, max_words_per_answer):
|
155 |
+
clean_QAs = []
|
156 |
+
answers_used = set()
|
157 |
+
# Only allow 1 question per answer, take the first case of it
|
158 |
+
for qa in generated_QAs:
|
159 |
+
answer_word_length = len(qa['answer'].strip().split())
|
160 |
+
if qa['answer'] in answers_used or answer_word_length > max_words_per_answer:
|
161 |
+
continue
|
162 |
+
answers_used.add(qa['answer'])
|
163 |
+
clean_QAs.append(qa)
|
164 |
+
return clean_QAs
|
165 |
+
|
166 |
+
def remove_pad(self, str):
|
167 |
+
if "<pad>" in str:
|
168 |
+
return str.replace("<pad>", "")
|
169 |
+
return str
|