File size: 2,211 Bytes
ee0c625 e995f9b f77624e 12821c3 1184c17 ee0c625 e995f9b ee0c625 b504e38 ee0c625 e995f9b ee0c625 e995f9b 12821c3 0ac40ca 12821c3 fbe4350 9cbe30a fbe4350 ee0c625 e995f9b ee0c625 e995f9b ee0c625 e995f9b ee0c625 e995f9b ee0c625 e995f9b 12821c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: mit
library_name: transformers
tags:
- image-to-image
- lineart
inference: false
---
# MangaLineExtraction-hf
The huggingface `transformers` compatible version of [MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch).
Original repo: https://github.com/ljsabc/MangaLineExtraction_PyTorch
## Example
```py
from PIL import Image
import torch
from transformers import AutoModel, AutoImageProcessor
REPO_NAME = "p1atdev/MangaLineExtraction-hf"
model = AutoModel.from_pretrained(REPO_NAME, trust_remote_code=True)
processor = AutoImageProcessor.from_pretrained(REPO_NAME, trust_remote_code=True)
image = Image.open("./sample.jpg")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(inputs.pixel_values)
line_image = Image.fromarray(outputs.pixel_values[0].numpy().astype("uint8"), mode="L")
line_image.save("./line_image.png")
```
or you can use the pipeline
```py
from transformers import pipeline
pipe = pipeline("image-to-image", model="p1atdev/MangaLineExtraction-hf", trust_remote_code=True)
pipe("sample.jpg")
```
|`sample.jpg`|Generated line image|
|-|-|
|<img src="./images/sample.jpg" width="320px" alt="Source image">|<img src="./images/line_image.png" width="320px" alt="Generated line image">|
## Model Details
### Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Chengze Li, Xueting Liu, Tien-Tsin Wong
- **Converted by:** Plat
- **License:** MIT
### Model Sources
- **Repository:** https://github.com/ljsabc/MangaLineExtraction_PyTorch
- **Paper:** https://ttwong12.github.io/papers/linelearn/linelearn.pdf
- **Project page:** https://www.cse.cuhk.edu.hk/~ttwong/papers/linelearn/linelearn.html
## Citation
**BibTeX:**
```bibtex
@article{li-2017-deep,
author = {Chengze Li and Xueting Liu and Tien-Tsin Wong},
title = {Deep Extraction of Manga Structural Lines},
journal = {ACM Transactions on Graphics (SIGGRAPH 2017 issue)},
month = {July},
year = {2017},
volume = {36},
number = {4},
pages = {117:1--117:12},
}
``` |