--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: '@SunderCR two hours of Sandstorm remixes. All merged together. No between-song silence.' - text: Discovered Plane Debris Is From Missing Malaysia Airlines Flight 370 | TIME http://t.co/7fSn1GeWUX - text: '#?? #???? #??? #??? MH370: Aircraft debris found on La Reunion is from missing Malaysia Airlines ... http://t.co/oTsM38XMas' - text: 'Today your life could change forever - #Chronicillness can''t be avoided - It can be survived Join #MyLifeStory >>> http://t.co/FYJWjDkM5I' - text: SHOUOUT TO @kasad1lla CAUSE HER VOCALS ARE BLAZING HOT LIKE THE WEATHER SHES IN pipeline_tag: text-classification inference: true base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8058161350844277 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8058 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("pEpOo/catastrophy6") # Run inference preds = model("SHOUOUT TO @kasad1lla CAUSE HER VOCALS ARE BLAZING HOT LIKE THE WEATHER SHES IN") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 14.7175 | 54 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 1335 | | 1 | 948 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0094 | 1 | 0.0044 | - | | 0.4717 | 50 | 0.005 | - | | 0.9434 | 100 | 0.0007 | - | | 0.0002 | 1 | 0.4675 | - | | 0.0088 | 50 | 0.3358 | - | | 0.0175 | 100 | 0.2516 | - | | 0.0263 | 150 | 0.2158 | - | | 0.0350 | 200 | 0.1924 | - | | 0.0438 | 250 | 0.1907 | - | | 0.0526 | 300 | 0.2166 | - | | 0.0613 | 350 | 0.2243 | - | | 0.0701 | 400 | 0.0644 | - | | 0.0788 | 450 | 0.1924 | - | | 0.0876 | 500 | 0.166 | - | | 0.0964 | 550 | 0.2117 | - | | 0.1051 | 600 | 0.0793 | - | | 0.1139 | 650 | 0.0808 | - | | 0.1226 | 700 | 0.1183 | - | | 0.1314 | 750 | 0.0808 | - | | 0.1402 | 800 | 0.0194 | - | | 0.1489 | 850 | 0.0699 | - | | 0.1577 | 900 | 0.0042 | - | | 0.1664 | 950 | 0.0048 | - | | 0.1752 | 1000 | 0.1886 | - | | 0.1840 | 1050 | 0.0008 | - | | 0.1927 | 1100 | 0.0033 | - | | 0.2015 | 1150 | 0.0361 | - | | 0.2102 | 1200 | 0.12 | - | | 0.2190 | 1250 | 0.0035 | - | | 0.2278 | 1300 | 0.0002 | - | | 0.2365 | 1350 | 0.0479 | - | | 0.2453 | 1400 | 0.0568 | - | | 0.2540 | 1450 | 0.0004 | - | | 0.2628 | 1500 | 0.0002 | - | | 0.2715 | 1550 | 0.0013 | - | | 0.2803 | 1600 | 0.0005 | - | | 0.2891 | 1650 | 0.0014 | - | | 0.2978 | 1700 | 0.0004 | - | | 0.3066 | 1750 | 0.0008 | - | | 0.3153 | 1800 | 0.0616 | - | | 0.3241 | 1850 | 0.0003 | - | | 0.3329 | 1900 | 0.001 | - | | 0.3416 | 1950 | 0.0581 | - | | 0.3504 | 2000 | 0.0657 | - | | 0.3591 | 2050 | 0.0584 | - | | 0.3679 | 2100 | 0.0339 | - | | 0.3767 | 2150 | 0.0081 | - | | 0.3854 | 2200 | 0.0001 | - | | 0.3942 | 2250 | 0.0009 | - | | 0.4029 | 2300 | 0.0018 | - | | 0.4117 | 2350 | 0.0001 | - | | 0.4205 | 2400 | 0.0012 | - | | 0.4292 | 2450 | 0.0001 | - | | 0.4380 | 2500 | 0.0003 | - | | 0.4467 | 2550 | 0.0035 | - | | 0.4555 | 2600 | 0.0172 | - | | 0.4643 | 2650 | 0.0383 | - | | 0.4730 | 2700 | 0.0222 | - | | 0.4818 | 2750 | 0.0013 | - | | 0.4905 | 2800 | 0.0007 | - | | 0.4993 | 2850 | 0.0003 | - | | 0.5081 | 2900 | 0.1247 | - | | 0.5168 | 2950 | 0.023 | - | | 0.5256 | 3000 | 0.0002 | - | | 0.5343 | 3050 | 0.0002 | - | | 0.5431 | 3100 | 0.0666 | - | | 0.5519 | 3150 | 0.0002 | - | | 0.5606 | 3200 | 0.0003 | - | | 0.5694 | 3250 | 0.0012 | - | | 0.5781 | 3300 | 0.0085 | - | | 0.5869 | 3350 | 0.0003 | - | | 0.5957 | 3400 | 0.0002 | - | | 0.6044 | 3450 | 0.0004 | - | | 0.6132 | 3500 | 0.013 | - | | 0.6219 | 3550 | 0.0089 | - | | 0.6307 | 3600 | 0.0001 | - | | 0.6395 | 3650 | 0.0002 | - | | 0.6482 | 3700 | 0.0039 | - | | 0.6570 | 3750 | 0.0031 | - | | 0.6657 | 3800 | 0.0009 | - | | 0.6745 | 3850 | 0.0002 | - | | 0.6833 | 3900 | 0.0002 | - | | 0.6920 | 3950 | 0.0001 | - | | 0.7008 | 4000 | 0.0 | - | | 0.7095 | 4050 | 0.0212 | - | | 0.7183 | 4100 | 0.0001 | - | | 0.7270 | 4150 | 0.0586 | - | | 0.7358 | 4200 | 0.0001 | - | | 0.7446 | 4250 | 0.0003 | - | | 0.7533 | 4300 | 0.0126 | - | | 0.7621 | 4350 | 0.0001 | - | | 0.7708 | 4400 | 0.0001 | - | | 0.7796 | 4450 | 0.0001 | - | | 0.7884 | 4500 | 0.0 | - | | 0.7971 | 4550 | 0.0002 | - | | 0.8059 | 4600 | 0.0002 | - | | 0.8146 | 4650 | 0.0001 | - | | 0.8234 | 4700 | 0.0035 | - | | 0.8322 | 4750 | 0.0002 | - | | 0.8409 | 4800 | 0.0002 | - | | 0.8497 | 4850 | 0.0001 | - | | 0.8584 | 4900 | 0.0001 | - | | 0.8672 | 4950 | 0.0001 | - | | 0.8760 | 5000 | 0.0003 | - | | 0.8847 | 5050 | 0.0 | - | | 0.8935 | 5100 | 0.0041 | - | | 0.9022 | 5150 | 0.0001 | - | | 0.9110 | 5200 | 0.0001 | - | | 0.9198 | 5250 | 0.0001 | - | | 0.9285 | 5300 | 0.0001 | - | | 0.9373 | 5350 | 0.0001 | - | | 0.9460 | 5400 | 0.0001 | - | | 0.9548 | 5450 | 0.0001 | - | | 0.9636 | 5500 | 0.0001 | - | | 0.9723 | 5550 | 0.0001 | - | | 0.9811 | 5600 | 0.0002 | - | | 0.9898 | 5650 | 0.0271 | - | | 0.9986 | 5700 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.15.0 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```