--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-finetuned-valid-testing-0.00005-16 results: [] --- # BioMedRoBERTa-finetuned-valid-testing-0.00005-16 This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0868 - Precision: 0.8162 - Recall: 0.8225 - F1: 0.8194 - Accuracy: 0.9766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 417 | 0.1006 | 0.7400 | 0.7857 | 0.7622 | 0.9694 | | 0.3728 | 2.0 | 834 | 0.0739 | 0.8268 | 0.8092 | 0.8179 | 0.9778 | | 0.0615 | 3.0 | 1251 | 0.0800 | 0.7988 | 0.8101 | 0.8044 | 0.9734 | | 0.0449 | 4.0 | 1668 | 0.0843 | 0.8111 | 0.8214 | 0.8162 | 0.9763 | | 0.0325 | 5.0 | 2085 | 0.0868 | 0.8162 | 0.8225 | 0.8194 | 0.9766 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1