File size: 2,040 Bytes
2e6da50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
base_model: allenai/biomed_roberta_base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BioMedRoBERTa-finetuned-valid-testing
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BioMedRoBERTa-finetuned-valid-testing
This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0920
- Precision: 0.8179
- Recall: 0.8236
- F1: 0.8207
- Accuracy: 0.9760
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 417 | 0.1029 | 0.7906 | 0.7974 | 0.7940 | 0.9711 |
| 0.256 | 2.0 | 834 | 0.0807 | 0.8322 | 0.8077 | 0.8198 | 0.9772 |
| 0.0658 | 3.0 | 1251 | 0.0862 | 0.7913 | 0.8086 | 0.7999 | 0.9712 |
| 0.0448 | 4.0 | 1668 | 0.0871 | 0.8132 | 0.8151 | 0.8142 | 0.9768 |
| 0.0288 | 5.0 | 2085 | 0.0920 | 0.8179 | 0.8236 | 0.8207 | 0.9760 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|