--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training --- # Text-to-image finetuning - pabRomero/sd-kanji-model-lora This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **training_data_thick** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Tree']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("pabRomero/sd-kanji-model-lora", torch_dtype=torch.float16) prompt = "Tree" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 15 * Learning rate: 2e-06 * Batch size: 4 * Gradient accumulation steps: 4 * Image resolution: 128 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/pabromero-manchester-metropolitan-university/text2image-fine-tune/runs/77it5uin). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]