Training in progress, epoch 1
Browse files- README.md +81 -0
- config.json +44 -0
- logs/events.out.tfevents.1703150256.DESKTOP-HA84SVN.2677.0 +3 -0
- logs/events.out.tfevents.1703159383.DESKTOP-HA84SVN.4393.0 +3 -0
- model.safetensors +3 -0
- preprocessor_config.json +14 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7001
|
21 |
+
- Answer: {'precision': 0.7016574585635359, 'recall': 0.7849196538936959, 'f1': 0.7409568261376897, 'number': 809}
|
22 |
+
- Header: {'precision': 0.3115942028985507, 'recall': 0.36134453781512604, 'f1': 0.3346303501945525, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7809439002671416, 'recall': 0.8234741784037559, 'f1': 0.8016453382084096, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7179
|
25 |
+
- Overall Recall: 0.7802
|
26 |
+
- Overall F1: 0.7478
|
27 |
+
- Overall Accuracy: 0.8048
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7703 | 1.0 | 10 | 1.5577 | {'precision': 0.02032913843175218, 'recall': 0.02595797280593325, 'f1': 0.02280130293159609, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1728395061728395, 'recall': 0.17089201877934274, 'f1': 0.17186024551463644, 'number': 1065} | 0.0973 | 0.1019 | 0.0995 | 0.3886 |
|
60 |
+
| 1.3909 | 2.0 | 20 | 1.1804 | {'precision': 0.2391304347826087, 'recall': 0.20395550061804696, 'f1': 0.22014676450967313, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4996186117467582, 'recall': 0.6150234741784038, 'f1': 0.5513468013468013, 'number': 1065} | 0.4098 | 0.4114 | 0.4106 | 0.6136 |
|
61 |
+
| 1.045 | 3.0 | 30 | 0.9199 | {'precision': 0.5039018952062431, 'recall': 0.5587144622991347, 'f1': 0.5298944900351701, 'number': 809} | {'precision': 0.025, 'recall': 0.008403361344537815, 'f1': 0.012578616352201259, 'number': 119} | {'precision': 0.5976095617529881, 'recall': 0.704225352112676, 'f1': 0.6465517241379312, 'number': 1065} | 0.5488 | 0.6036 | 0.5749 | 0.7203 |
|
62 |
+
| 0.7906 | 4.0 | 40 | 0.7703 | {'precision': 0.6037735849056604, 'recall': 0.7119901112484549, 'f1': 0.6534316505955757, 'number': 809} | {'precision': 0.20833333333333334, 'recall': 0.12605042016806722, 'f1': 0.15706806282722513, 'number': 119} | {'precision': 0.6666666666666666, 'recall': 0.7812206572769953, 'f1': 0.719412019022914, 'number': 1065} | 0.6258 | 0.7140 | 0.6670 | 0.7687 |
|
63 |
+
| 0.635 | 5.0 | 50 | 0.7374 | {'precision': 0.6146179401993356, 'recall': 0.6860321384425216, 'f1': 0.6483644859813085, 'number': 809} | {'precision': 0.2976190476190476, 'recall': 0.21008403361344538, 'f1': 0.24630541871921183, 'number': 119} | {'precision': 0.6959349593495935, 'recall': 0.8037558685446009, 'f1': 0.7459694989106754, 'number': 1065} | 0.6477 | 0.7205 | 0.6822 | 0.7712 |
|
64 |
+
| 0.5475 | 6.0 | 60 | 0.6925 | {'precision': 0.6453305351521511, 'recall': 0.7601977750309024, 'f1': 0.6980703745743474, 'number': 809} | {'precision': 0.2542372881355932, 'recall': 0.25210084033613445, 'f1': 0.25316455696202533, 'number': 119} | {'precision': 0.7153589315525877, 'recall': 0.8046948356807512, 'f1': 0.7574016791869199, 'number': 1065} | 0.6620 | 0.7536 | 0.7048 | 0.7865 |
|
65 |
+
| 0.4876 | 7.0 | 70 | 0.6876 | {'precision': 0.649740932642487, 'recall': 0.7750309023485785, 'f1': 0.7068771138669674, 'number': 809} | {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119} | {'precision': 0.7449249779346867, 'recall': 0.7924882629107981, 'f1': 0.7679708826205641, 'number': 1065} | 0.6812 | 0.7516 | 0.7147 | 0.7952 |
|
66 |
+
| 0.4438 | 8.0 | 80 | 0.6672 | {'precision': 0.6842684268426843, 'recall': 0.7688504326328801, 'f1': 0.7240977881257276, 'number': 809} | {'precision': 0.26717557251908397, 'recall': 0.29411764705882354, 'f1': 0.28, 'number': 119} | {'precision': 0.7534602076124568, 'recall': 0.8178403755868544, 'f1': 0.7843313822602431, 'number': 1065} | 0.6958 | 0.7667 | 0.7295 | 0.8040 |
|
67 |
+
| 0.3708 | 9.0 | 90 | 0.6684 | {'precision': 0.6832779623477298, 'recall': 0.7626699629171817, 'f1': 0.7207943925233644, 'number': 809} | {'precision': 0.2549019607843137, 'recall': 0.3277310924369748, 'f1': 0.286764705882353, 'number': 119} | {'precision': 0.7547660311958405, 'recall': 0.8178403755868544, 'f1': 0.7850383055430372, 'number': 1065} | 0.6910 | 0.7662 | 0.7266 | 0.8003 |
|
68 |
+
| 0.3433 | 10.0 | 100 | 0.6779 | {'precision': 0.6833514689880305, 'recall': 0.7762669962917181, 'f1': 0.7268518518518517, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.29411764705882354, 'f1': 0.29411764705882354, 'number': 119} | {'precision': 0.7772887323943662, 'recall': 0.8291079812206573, 'f1': 0.8023625624716039, 'number': 1065} | 0.7111 | 0.7757 | 0.7420 | 0.8084 |
|
69 |
+
| 0.3173 | 11.0 | 110 | 0.6856 | {'precision': 0.6939890710382514, 'recall': 0.7849196538936959, 'f1': 0.7366589327146172, 'number': 809} | {'precision': 0.3089430894308943, 'recall': 0.31932773109243695, 'f1': 0.3140495867768595, 'number': 119} | {'precision': 0.7876895628902766, 'recall': 0.8291079812206573, 'f1': 0.807868252516011, 'number': 1065} | 0.7207 | 0.7807 | 0.7495 | 0.8103 |
|
70 |
+
| 0.2951 | 12.0 | 120 | 0.6854 | {'precision': 0.6961883408071748, 'recall': 0.7676143386897404, 'f1': 0.7301587301587301, 'number': 809} | {'precision': 0.2986111111111111, 'recall': 0.36134453781512604, 'f1': 0.32699619771863114, 'number': 119} | {'precision': 0.7908438061041293, 'recall': 0.8272300469483568, 'f1': 0.8086278109224414, 'number': 1065} | 0.7186 | 0.7752 | 0.7458 | 0.8061 |
|
71 |
+
| 0.2819 | 13.0 | 130 | 0.6966 | {'precision': 0.6995661605206074, 'recall': 0.7972805933250927, 'f1': 0.7452339688041594, 'number': 809} | {'precision': 0.3, 'recall': 0.35294117647058826, 'f1': 0.3243243243243243, 'number': 119} | {'precision': 0.7793594306049823, 'recall': 0.8225352112676056, 'f1': 0.8003654636820466, 'number': 1065} | 0.7150 | 0.7842 | 0.7480 | 0.8056 |
|
72 |
+
| 0.2653 | 14.0 | 140 | 0.7000 | {'precision': 0.6970033296337403, 'recall': 0.7762669962917181, 'f1': 0.7345029239766083, 'number': 809} | {'precision': 0.30714285714285716, 'recall': 0.36134453781512604, 'f1': 0.33204633204633205, 'number': 119} | {'precision': 0.7908025247971145, 'recall': 0.8234741784037559, 'f1': 0.8068077276908925, 'number': 1065} | 0.72 | 0.7767 | 0.7473 | 0.8057 |
|
73 |
+
| 0.2662 | 15.0 | 150 | 0.7001 | {'precision': 0.7016574585635359, 'recall': 0.7849196538936959, 'f1': 0.7409568261376897, 'number': 809} | {'precision': 0.3115942028985507, 'recall': 0.36134453781512604, 'f1': 0.3346303501945525, 'number': 119} | {'precision': 0.7809439002671416, 'recall': 0.8234741784037559, 'f1': 0.8016453382084096, 'number': 1065} | 0.7179 | 0.7802 | 0.7478 | 0.8048 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.36.2
|
79 |
+
- Pytorch 2.1.2
|
80 |
+
- Datasets 2.15.0
|
81 |
+
- Tokenizers 0.15.0
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/layoutlm-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"LayoutLMForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "O",
|
12 |
+
"1": "B-HEADER",
|
13 |
+
"2": "I-HEADER",
|
14 |
+
"3": "B-QUESTION",
|
15 |
+
"4": "I-QUESTION",
|
16 |
+
"5": "B-ANSWER",
|
17 |
+
"6": "I-ANSWER"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"B-ANSWER": 5,
|
23 |
+
"B-HEADER": 1,
|
24 |
+
"B-QUESTION": 3,
|
25 |
+
"I-ANSWER": 6,
|
26 |
+
"I-HEADER": 2,
|
27 |
+
"I-QUESTION": 4,
|
28 |
+
"O": 0
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-12,
|
31 |
+
"max_2d_position_embeddings": 1024,
|
32 |
+
"max_position_embeddings": 512,
|
33 |
+
"model_type": "layoutlm",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"output_past": true,
|
37 |
+
"pad_token_id": 0,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.36.2",
|
41 |
+
"type_vocab_size": 2,
|
42 |
+
"use_cache": true,
|
43 |
+
"vocab_size": 30522
|
44 |
+
}
|
logs/events.out.tfevents.1703150256.DESKTOP-HA84SVN.2677.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef1a510b8c50e11a9e5eb6e5ad5c6ed817c4f57789f42b042fc901e77bf3a3e4
|
3 |
+
size 14729
|
logs/events.out.tfevents.1703159383.DESKTOP-HA84SVN.4393.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2628a267a12b9973619b2797a3664f7f5465c6050312a7f89e66eef9965fed9b
|
3 |
+
size 5253
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91b72efb027050fa918cc60dc88f028aa13913352a9a59485310c9227ef76193
|
3 |
+
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "LayoutLMv2FeatureExtractor",
|
5 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
6 |
+
"ocr_lang": null,
|
7 |
+
"processor_class": "LayoutLMv2Processor",
|
8 |
+
"resample": 2,
|
9 |
+
"size": {
|
10 |
+
"height": 224,
|
11 |
+
"width": 224
|
12 |
+
},
|
13 |
+
"tesseract_config": ""
|
14 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:496cdc98bd97b69e26b61b75e57108b3ab8f568934ff5478c2cab003032ae00d
|
3 |
+
size 4728
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|