pabloma09 commited on
Commit
fa6b01d
·
verified ·
1 Parent(s): b3c975d

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [pabloma09/layoutlm-funsd](https://huggingface.co/pabloma09/layoutlm-funsd) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.9937
20
- - Eader: {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32}
21
- - Nswer: {'precision': 0.5135135135135135, 'recall': 0.5428571428571428, 'f1': 0.5277777777777778, 'number': 70}
22
- - Uestion: {'precision': 0.4931506849315068, 'recall': 0.46153846153846156, 'f1': 0.4768211920529801, 'number': 78}
23
- - Overall Precision: 0.4850
24
- - Overall Recall: 0.45
25
- - Overall F1: 0.4669
26
- - Overall Accuracy: 0.8029
27
 
28
  ## Model description
29
 
@@ -53,23 +53,23 @@ The following hyperparameters were used during training:
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 0.1124 | 1.0 | 13 | 0.8542 | {'precision': 0.32, 'recall': 0.25, 'f1': 0.2807017543859649, 'number': 32} | {'precision': 0.4647887323943662, 'recall': 0.4714285714285714, 'f1': 0.46808510638297873, 'number': 70} | {'precision': 0.4861111111111111, 'recall': 0.44871794871794873, 'f1': 0.4666666666666667, 'number': 78} | 0.4524 | 0.4222 | 0.4368 | 0.7848 |
59
- | 0.1002 | 2.0 | 26 | 0.8579 | {'precision': 0.3181818181818182, 'recall': 0.21875, 'f1': 0.25925925925925924, 'number': 32} | {'precision': 0.4146341463414634, 'recall': 0.4857142857142857, 'f1': 0.4473684210526316, 'number': 70} | {'precision': 0.4125, 'recall': 0.4230769230769231, 'f1': 0.4177215189873418, 'number': 78} | 0.4022 | 0.4111 | 0.4066 | 0.7559 |
60
- | 0.0905 | 3.0 | 39 | 0.7874 | {'precision': 0.34782608695652173, 'recall': 0.25, 'f1': 0.2909090909090909, 'number': 32} | {'precision': 0.45, 'recall': 0.5142857142857142, 'f1': 0.48, 'number': 70} | {'precision': 0.5, 'recall': 0.48717948717948717, 'f1': 0.49350649350649345, 'number': 78} | 0.4581 | 0.4556 | 0.4568 | 0.7987 |
61
- | 0.0743 | 4.0 | 52 | 0.9167 | {'precision': 0.4, 'recall': 0.1875, 'f1': 0.25531914893617025, 'number': 32} | {'precision': 0.48, 'recall': 0.5142857142857142, 'f1': 0.496551724137931, 'number': 70} | {'precision': 0.5333333333333333, 'recall': 0.5128205128205128, 'f1': 0.5228758169934641, 'number': 78} | 0.4970 | 0.4556 | 0.4754 | 0.7926 |
62
- | 0.0534 | 5.0 | 65 | 0.9266 | {'precision': 0.45, 'recall': 0.28125, 'f1': 0.34615384615384615, 'number': 32} | {'precision': 0.43373493975903615, 'recall': 0.5142857142857142, 'f1': 0.47058823529411764, 'number': 70} | {'precision': 0.4805194805194805, 'recall': 0.47435897435897434, 'f1': 0.47741935483870973, 'number': 78} | 0.4556 | 0.4556 | 0.4556 | 0.7800 |
63
- | 0.0465 | 6.0 | 78 | 1.0600 | {'precision': 0.3, 'recall': 0.1875, 'f1': 0.23076923076923075, 'number': 32} | {'precision': 0.4864864864864865, 'recall': 0.5142857142857142, 'f1': 0.5, 'number': 70} | {'precision': 0.4666666666666667, 'recall': 0.44871794871794873, 'f1': 0.45751633986928103, 'number': 78} | 0.4556 | 0.4278 | 0.4413 | 0.7197 |
64
- | 0.0388 | 7.0 | 91 | 0.9172 | {'precision': 0.4444444444444444, 'recall': 0.25, 'f1': 0.32, 'number': 32} | {'precision': 0.5, 'recall': 0.5571428571428572, 'f1': 0.5270270270270271, 'number': 70} | {'precision': 0.4625, 'recall': 0.47435897435897434, 'f1': 0.46835443037974683, 'number': 78} | 0.4773 | 0.4667 | 0.4719 | 0.7740 |
65
- | 0.0333 | 8.0 | 104 | 0.9758 | {'precision': 0.3684210526315789, 'recall': 0.21875, 'f1': 0.2745098039215686, 'number': 32} | {'precision': 0.4157303370786517, 'recall': 0.5285714285714286, 'f1': 0.46540880503144655, 'number': 70} | {'precision': 0.4186046511627907, 'recall': 0.46153846153846156, 'f1': 0.4390243902439025, 'number': 78} | 0.4124 | 0.4444 | 0.4278 | 0.7770 |
66
- | 0.0269 | 9.0 | 117 | 0.9879 | {'precision': 0.2916666666666667, 'recall': 0.21875, 'f1': 0.25, 'number': 32} | {'precision': 0.4, 'recall': 0.5142857142857142, 'f1': 0.45, 'number': 70} | {'precision': 0.3888888888888889, 'recall': 0.44871794871794873, 'f1': 0.41666666666666663, 'number': 78} | 0.3824 | 0.4333 | 0.4062 | 0.7794 |
67
- | 0.0255 | 10.0 | 130 | 0.9909 | {'precision': 0.3, 'recall': 0.1875, 'f1': 0.23076923076923075, 'number': 32} | {'precision': 0.43902439024390244, 'recall': 0.5142857142857142, 'f1': 0.4736842105263158, 'number': 70} | {'precision': 0.4358974358974359, 'recall': 0.4358974358974359, 'f1': 0.4358974358974359, 'number': 78} | 0.4222 | 0.4222 | 0.4222 | 0.7914 |
68
- | 0.0217 | 11.0 | 143 | 0.9914 | {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32} | {'precision': 0.5066666666666667, 'recall': 0.5428571428571428, 'f1': 0.5241379310344827, 'number': 70} | {'precision': 0.45121951219512196, 'recall': 0.47435897435897434, 'f1': 0.46249999999999997, 'number': 78} | 0.4633 | 0.4556 | 0.4594 | 0.7951 |
69
- | 0.024 | 12.0 | 156 | 0.9999 | {'precision': 0.3684210526315789, 'recall': 0.21875, 'f1': 0.2745098039215686, 'number': 32} | {'precision': 0.5064935064935064, 'recall': 0.5571428571428572, 'f1': 0.5306122448979592, 'number': 70} | {'precision': 0.475, 'recall': 0.48717948717948717, 'f1': 0.4810126582278481, 'number': 78} | 0.4773 | 0.4667 | 0.4719 | 0.7896 |
70
- | 0.0197 | 13.0 | 169 | 0.9820 | {'precision': 0.3333333333333333, 'recall': 0.21875, 'f1': 0.2641509433962264, 'number': 32} | {'precision': 0.49333333333333335, 'recall': 0.5285714285714286, 'f1': 0.5103448275862069, 'number': 70} | {'precision': 0.5205479452054794, 'recall': 0.48717948717948717, 'f1': 0.5033112582781456, 'number': 78} | 0.4852 | 0.4556 | 0.4699 | 0.8053 |
71
- | 0.022 | 14.0 | 182 | 0.9912 | {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32} | {'precision': 0.5, 'recall': 0.5428571428571428, 'f1': 0.5205479452054795, 'number': 70} | {'precision': 0.4864864864864865, 'recall': 0.46153846153846156, 'f1': 0.47368421052631576, 'number': 78} | 0.4765 | 0.45 | 0.4629 | 0.8023 |
72
- | 0.0215 | 15.0 | 195 | 0.9937 | {'precision': 0.35, 'recall': 0.21875, 'f1': 0.2692307692307692, 'number': 32} | {'precision': 0.5135135135135135, 'recall': 0.5428571428571428, 'f1': 0.5277777777777778, 'number': 70} | {'precision': 0.4931506849315068, 'recall': 0.46153846153846156, 'f1': 0.4768211920529801, 'number': 78} | 0.4850 | 0.45 | 0.4669 | 0.8029 |
73
 
74
 
75
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [pabloma09/layoutlm-funsd](https://huggingface.co/pabloma09/layoutlm-funsd) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.5379
20
+ - Eader: {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57}
21
+ - Nswer: {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141}
22
+ - Uestion: {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161}
23
+ - Overall Precision: 0.7235
24
+ - Overall Recall: 0.6852
25
+ - Overall F1: 0.7039
26
+ - Overall Accuracy: 0.9016
27
 
28
  ## Model description
29
 
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 0.0751 | 1.0 | 12 | 0.4989 | {'precision': 0.5740740740740741, 'recall': 0.543859649122807, 'f1': 0.5585585585585585, 'number': 57} | {'precision': 0.673202614379085, 'recall': 0.7304964539007093, 'f1': 0.7006802721088436, 'number': 141} | {'precision': 0.6666666666666666, 'recall': 0.6708074534161491, 'f1': 0.6687306501547988, 'number': 161} | 0.6558 | 0.6741 | 0.6648 | 0.8675 |
59
+ | 0.0681 | 2.0 | 24 | 0.4233 | {'precision': 0.6739130434782609, 'recall': 0.543859649122807, 'f1': 0.6019417475728156, 'number': 57} | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} | {'precision': 0.7044025157232704, 'recall': 0.6956521739130435, 'f1': 0.7, 'number': 161} | 0.7147 | 0.6908 | 0.7025 | 0.9004 |
60
+ | 0.0499 | 3.0 | 36 | 0.4571 | {'precision': 0.775, 'recall': 0.543859649122807, 'f1': 0.6391752577319588, 'number': 57} | {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141} | {'precision': 0.73125, 'recall': 0.7267080745341615, 'f1': 0.7289719626168223, 'number': 161} | 0.7267 | 0.6964 | 0.7112 | 0.8998 |
61
+ | 0.037 | 4.0 | 48 | 0.4636 | {'precision': 0.7045454545454546, 'recall': 0.543859649122807, 'f1': 0.613861386138614, 'number': 57} | {'precision': 0.7142857142857143, 'recall': 0.7446808510638298, 'f1': 0.7291666666666666, 'number': 141} | {'precision': 0.7222222222222222, 'recall': 0.7267080745341615, 'f1': 0.7244582043343654, 'number': 161} | 0.7167 | 0.7047 | 0.7107 | 0.9016 |
62
+ | 0.0329 | 5.0 | 60 | 0.5128 | {'precision': 0.6530612244897959, 'recall': 0.5614035087719298, 'f1': 0.6037735849056605, 'number': 57} | {'precision': 0.697986577181208, 'recall': 0.7375886524822695, 'f1': 0.7172413793103447, 'number': 141} | {'precision': 0.6706586826347305, 'recall': 0.6956521739130435, 'f1': 0.6829268292682926, 'number': 161} | 0.6795 | 0.6908 | 0.6851 | 0.8880 |
63
+ | 0.0263 | 6.0 | 72 | 0.5192 | {'precision': 0.6904761904761905, 'recall': 0.5087719298245614, 'f1': 0.5858585858585859, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7484276729559748, 'recall': 0.7391304347826086, 'f1': 0.7437500000000001, 'number': 161} | 0.7289 | 0.6964 | 0.7123 | 0.8995 |
64
+ | 0.023 | 7.0 | 84 | 0.5452 | {'precision': 0.6976744186046512, 'recall': 0.5263157894736842, 'f1': 0.6, 'number': 57} | {'precision': 0.7202797202797203, 'recall': 0.7304964539007093, 'f1': 0.7253521126760565, 'number': 141} | {'precision': 0.7, 'recall': 0.6956521739130435, 'f1': 0.6978193146417445, 'number': 161} | 0.7081 | 0.6825 | 0.6950 | 0.8956 |
65
+ | 0.0205 | 8.0 | 96 | 0.5398 | {'precision': 0.6666666666666666, 'recall': 0.5614035087719298, 'f1': 0.6095238095238096, 'number': 57} | {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141} | {'precision': 0.7151898734177216, 'recall': 0.7018633540372671, 'f1': 0.7084639498432601, 'number': 161} | 0.7057 | 0.6880 | 0.6968 | 0.8971 |
66
+ | 0.0182 | 9.0 | 108 | 0.5025 | {'precision': 0.62, 'recall': 0.543859649122807, 'f1': 0.5794392523364487, 'number': 57} | {'precision': 0.7482014388489209, 'recall': 0.7375886524822695, 'f1': 0.7428571428571428, 'number': 141} | {'precision': 0.7088607594936709, 'recall': 0.6956521739130435, 'f1': 0.7021943573667712, 'number': 161} | 0.7118 | 0.6880 | 0.6997 | 0.9046 |
67
+ | 0.0175 | 10.0 | 120 | 0.5017 | {'precision': 0.6888888888888889, 'recall': 0.543859649122807, 'f1': 0.6078431372549019, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7133757961783439, 'recall': 0.6956521739130435, 'f1': 0.7044025157232704, 'number': 161} | 0.7122 | 0.6825 | 0.6970 | 0.9031 |
68
+ | 0.0157 | 11.0 | 132 | 0.5034 | {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} | {'precision': 0.7357142857142858, 'recall': 0.7304964539007093, 'f1': 0.7330960854092528, 'number': 141} | {'precision': 0.7243589743589743, 'recall': 0.7018633540372671, 'f1': 0.7129337539432177, 'number': 161} | 0.7294 | 0.6908 | 0.7096 | 0.9037 |
69
+ | 0.0151 | 12.0 | 144 | 0.5181 | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} | 0.7235 | 0.6852 | 0.7039 | 0.9040 |
70
+ | 0.0122 | 13.0 | 156 | 0.5368 | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} | {'precision': 0.7261146496815286, 'recall': 0.7080745341614907, 'f1': 0.7169811320754716, 'number': 161} | 0.7310 | 0.6964 | 0.7133 | 0.9019 |
71
+ | 0.0114 | 14.0 | 168 | 0.5372 | {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} | {'precision': 0.7272727272727273, 'recall': 0.7375886524822695, 'f1': 0.7323943661971831, 'number': 141} | {'precision': 0.7197452229299363, 'recall': 0.7018633540372671, 'f1': 0.7106918238993711, 'number': 161} | 0.7238 | 0.6936 | 0.7084 | 0.9022 |
72
+ | 0.0126 | 15.0 | 180 | 0.5379 | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} | 0.7235 | 0.6852 | 0.7039 | 0.9016 |
73
 
74
 
75
  ### Framework versions
logs/events.out.tfevents.1741102575.DESKTOP-HA84SVN.3577307.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9bfd5d301e88ef5ed0df7aaa53b45447cb2fbbe65d3a75add59aaa7485d6d32
3
- size 15332
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac2d4e3ecc8dc8d39463a9b229e601d3398a26ee30b4119eaec5a2edcd423c00
3
+ size 16190
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:184c38a7c39563b7c99bd5b6eef5a0c00ec30d88feb0c9d3cd0d1cd570fa983a
3
  size 450548984
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59a36a86148643326fc04e9ec26d92c5596012b296eaaa1dd76395a400055a40
3
  size 450548984