--- library_name: transformers license: mit base_model: pabloma09/layoutlm-funsd tags: - generated_from_trainer model-index: - name: layoutlm-funsd results: [] --- # layoutlm-funsd This model is a fine-tuned version of [pabloma09/layoutlm-funsd](https://huggingface.co/pabloma09/layoutlm-funsd) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5379 - Eader: {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} - Nswer: {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} - Uestion: {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} - Overall Precision: 0.7235 - Overall Recall: 0.6852 - Overall F1: 0.7039 - Overall Accuracy: 0.9016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0751 | 1.0 | 12 | 0.4989 | {'precision': 0.5740740740740741, 'recall': 0.543859649122807, 'f1': 0.5585585585585585, 'number': 57} | {'precision': 0.673202614379085, 'recall': 0.7304964539007093, 'f1': 0.7006802721088436, 'number': 141} | {'precision': 0.6666666666666666, 'recall': 0.6708074534161491, 'f1': 0.6687306501547988, 'number': 161} | 0.6558 | 0.6741 | 0.6648 | 0.8675 | | 0.0681 | 2.0 | 24 | 0.4233 | {'precision': 0.6739130434782609, 'recall': 0.543859649122807, 'f1': 0.6019417475728156, 'number': 57} | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} | {'precision': 0.7044025157232704, 'recall': 0.6956521739130435, 'f1': 0.7, 'number': 161} | 0.7147 | 0.6908 | 0.7025 | 0.9004 | | 0.0499 | 3.0 | 36 | 0.4571 | {'precision': 0.775, 'recall': 0.543859649122807, 'f1': 0.6391752577319588, 'number': 57} | {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141} | {'precision': 0.73125, 'recall': 0.7267080745341615, 'f1': 0.7289719626168223, 'number': 161} | 0.7267 | 0.6964 | 0.7112 | 0.8998 | | 0.037 | 4.0 | 48 | 0.4636 | {'precision': 0.7045454545454546, 'recall': 0.543859649122807, 'f1': 0.613861386138614, 'number': 57} | {'precision': 0.7142857142857143, 'recall': 0.7446808510638298, 'f1': 0.7291666666666666, 'number': 141} | {'precision': 0.7222222222222222, 'recall': 0.7267080745341615, 'f1': 0.7244582043343654, 'number': 161} | 0.7167 | 0.7047 | 0.7107 | 0.9016 | | 0.0329 | 5.0 | 60 | 0.5128 | {'precision': 0.6530612244897959, 'recall': 0.5614035087719298, 'f1': 0.6037735849056605, 'number': 57} | {'precision': 0.697986577181208, 'recall': 0.7375886524822695, 'f1': 0.7172413793103447, 'number': 141} | {'precision': 0.6706586826347305, 'recall': 0.6956521739130435, 'f1': 0.6829268292682926, 'number': 161} | 0.6795 | 0.6908 | 0.6851 | 0.8880 | | 0.0263 | 6.0 | 72 | 0.5192 | {'precision': 0.6904761904761905, 'recall': 0.5087719298245614, 'f1': 0.5858585858585859, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7484276729559748, 'recall': 0.7391304347826086, 'f1': 0.7437500000000001, 'number': 161} | 0.7289 | 0.6964 | 0.7123 | 0.8995 | | 0.023 | 7.0 | 84 | 0.5452 | {'precision': 0.6976744186046512, 'recall': 0.5263157894736842, 'f1': 0.6, 'number': 57} | {'precision': 0.7202797202797203, 'recall': 0.7304964539007093, 'f1': 0.7253521126760565, 'number': 141} | {'precision': 0.7, 'recall': 0.6956521739130435, 'f1': 0.6978193146417445, 'number': 161} | 0.7081 | 0.6825 | 0.6950 | 0.8956 | | 0.0205 | 8.0 | 96 | 0.5398 | {'precision': 0.6666666666666666, 'recall': 0.5614035087719298, 'f1': 0.6095238095238096, 'number': 57} | {'precision': 0.7083333333333334, 'recall': 0.723404255319149, 'f1': 0.7157894736842105, 'number': 141} | {'precision': 0.7151898734177216, 'recall': 0.7018633540372671, 'f1': 0.7084639498432601, 'number': 161} | 0.7057 | 0.6880 | 0.6968 | 0.8971 | | 0.0182 | 9.0 | 108 | 0.5025 | {'precision': 0.62, 'recall': 0.543859649122807, 'f1': 0.5794392523364487, 'number': 57} | {'precision': 0.7482014388489209, 'recall': 0.7375886524822695, 'f1': 0.7428571428571428, 'number': 141} | {'precision': 0.7088607594936709, 'recall': 0.6956521739130435, 'f1': 0.7021943573667712, 'number': 161} | 0.7118 | 0.6880 | 0.6997 | 0.9046 | | 0.0175 | 10.0 | 120 | 0.5017 | {'precision': 0.6888888888888889, 'recall': 0.543859649122807, 'f1': 0.6078431372549019, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7133757961783439, 'recall': 0.6956521739130435, 'f1': 0.7044025157232704, 'number': 161} | 0.7122 | 0.6825 | 0.6970 | 0.9031 | | 0.0157 | 11.0 | 132 | 0.5034 | {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} | {'precision': 0.7357142857142858, 'recall': 0.7304964539007093, 'f1': 0.7330960854092528, 'number': 141} | {'precision': 0.7243589743589743, 'recall': 0.7018633540372671, 'f1': 0.7129337539432177, 'number': 161} | 0.7294 | 0.6908 | 0.7096 | 0.9037 | | 0.0151 | 12.0 | 144 | 0.5181 | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} | 0.7235 | 0.6852 | 0.7039 | 0.9040 | | 0.0122 | 13.0 | 156 | 0.5368 | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} | {'precision': 0.7394366197183099, 'recall': 0.7446808510638298, 'f1': 0.7420494699646644, 'number': 141} | {'precision': 0.7261146496815286, 'recall': 0.7080745341614907, 'f1': 0.7169811320754716, 'number': 161} | 0.7310 | 0.6964 | 0.7133 | 0.9019 | | 0.0114 | 14.0 | 168 | 0.5372 | {'precision': 0.7272727272727273, 'recall': 0.5614035087719298, 'f1': 0.6336633663366337, 'number': 57} | {'precision': 0.7272727272727273, 'recall': 0.7375886524822695, 'f1': 0.7323943661971831, 'number': 141} | {'precision': 0.7197452229299363, 'recall': 0.7018633540372671, 'f1': 0.7106918238993711, 'number': 161} | 0.7238 | 0.6936 | 0.7084 | 0.9022 | | 0.0126 | 15.0 | 180 | 0.5379 | {'precision': 0.7209302325581395, 'recall': 0.543859649122807, 'f1': 0.6200000000000001, 'number': 57} | {'precision': 0.7183098591549296, 'recall': 0.723404255319149, 'f1': 0.7208480565371025, 'number': 141} | {'precision': 0.7290322580645161, 'recall': 0.7018633540372671, 'f1': 0.7151898734177216, 'number': 161} | 0.7235 | 0.6852 | 0.7039 | 0.9016 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0