pabloruizponce
commited on
Upload model
Browse files- README.md +199 -0
- config.json +31 -0
- config.py +48 -0
- model.py +72 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ACTIVATION": "gelu",
|
3 |
+
"BETA_SCHEDULER": "cosine",
|
4 |
+
"CFG_WEIGHT": 3,
|
5 |
+
"CFG_WEIGHT_INDIVIDUAL": 1,
|
6 |
+
"CFG_WEIGHT_INTERACTION": 3,
|
7 |
+
"CONTROL": "text",
|
8 |
+
"DIFFUSION_STEPS": 1000,
|
9 |
+
"DROPOUT": 0.1,
|
10 |
+
"FF_SIZE": 2048,
|
11 |
+
"FINETUNE": false,
|
12 |
+
"INPUT_DIM": 262,
|
13 |
+
"LATENT_DIM": 1024,
|
14 |
+
"MODE": "interaction",
|
15 |
+
"MOTION_REP": "global",
|
16 |
+
"NUM_HEADS": 8,
|
17 |
+
"NUM_LAYERS": 8,
|
18 |
+
"SAMPLER": "uniform",
|
19 |
+
"STRATEGY": "ddim50",
|
20 |
+
"TEXT_ENCODER": "clip",
|
21 |
+
"T_BAR": 700,
|
22 |
+
"architectures": [
|
23 |
+
"in2INModel"
|
24 |
+
],
|
25 |
+
"auto_map": {
|
26 |
+
"AutoConfig": "config.in2INConfig",
|
27 |
+
"AutoModel": "model.in2INModel"
|
28 |
+
},
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.41.2"
|
31 |
+
}
|
config.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class in2INConfig(PretrainedConfig):
|
4 |
+
def __init__(self,
|
5 |
+
num_layers=8,
|
6 |
+
num_heads=8,
|
7 |
+
dropout=0.1,
|
8 |
+
input_dim=262,
|
9 |
+
latent_dim=1024,
|
10 |
+
ff_size=2048,
|
11 |
+
activation="gelu",
|
12 |
+
diffusion_steps=1000,
|
13 |
+
beta_scheduler="cosine",
|
14 |
+
sampler="uniform",
|
15 |
+
motion_rep="global",
|
16 |
+
finetune=False,
|
17 |
+
text_encoder="clip",
|
18 |
+
t_bar=700,
|
19 |
+
control="text",
|
20 |
+
strategy="ddim50",
|
21 |
+
cfg_weight=3,
|
22 |
+
cfg_weight_interaction=3,
|
23 |
+
cfg_weight_individual=1,
|
24 |
+
mode="interaction",
|
25 |
+
**kwargs):
|
26 |
+
|
27 |
+
self.NUM_LAYERS = num_layers
|
28 |
+
self.NUM_HEADS = num_heads
|
29 |
+
self.DROPOUT = dropout
|
30 |
+
self.INPUT_DIM = input_dim
|
31 |
+
self.LATENT_DIM = latent_dim
|
32 |
+
self.FF_SIZE = ff_size
|
33 |
+
self.ACTIVATION = activation
|
34 |
+
self.DIFFUSION_STEPS = diffusion_steps
|
35 |
+
self.BETA_SCHEDULER = beta_scheduler
|
36 |
+
self.SAMPLER = sampler
|
37 |
+
self.MOTION_REP = motion_rep
|
38 |
+
self.FINETUNE = finetune
|
39 |
+
self.TEXT_ENCODER = text_encoder
|
40 |
+
self.T_BAR = t_bar
|
41 |
+
self.CONTROL = control
|
42 |
+
self.STRATEGY = strategy
|
43 |
+
self.CFG_WEIGHT = cfg_weight
|
44 |
+
self.CFG_WEIGHT_INTERACTION = cfg_weight_interaction
|
45 |
+
self.CFG_WEIGHT_INDIVIDUAL = cfg_weight_individual
|
46 |
+
self.MODE = mode
|
47 |
+
|
48 |
+
super().__init__(**kwargs)
|
model.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import copy
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from typing import OrderedDict
|
6 |
+
from scipy.ndimage import gaussian_filter1d
|
7 |
+
|
8 |
+
from transformers import PreTrainedModel
|
9 |
+
from in2in.utils.configs import get_config
|
10 |
+
from in2in.models.in2in import in2IN
|
11 |
+
|
12 |
+
from .config import in2INConfig
|
13 |
+
|
14 |
+
class in2INModel(PreTrainedModel):
|
15 |
+
config_class = in2INConfig
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__(config)
|
19 |
+
self.model = in2IN(config, mode=config.MODE)
|
20 |
+
|
21 |
+
def forward(self, prompt_interaction, prompt_individual1, prompt_individual2):
|
22 |
+
self.model.eval()
|
23 |
+
batch = OrderedDict({})
|
24 |
+
|
25 |
+
batch["motion_lens"] = torch.zeros(1,1).long().cuda()
|
26 |
+
batch["prompt_interaction"] = prompt_interaction
|
27 |
+
|
28 |
+
if self.mode != "individual":
|
29 |
+
batch["prompt_individual1"] = prompt_individual1
|
30 |
+
batch["prompt_individual2"] = prompt_individual2
|
31 |
+
|
32 |
+
window_size = 210
|
33 |
+
motion_output = self.generate_loop(batch, window_size)
|
34 |
+
return motion_output
|
35 |
+
|
36 |
+
def generate_loop(self, batch, window_size):
|
37 |
+
prompt_interaction = batch["prompt_interaction"]
|
38 |
+
|
39 |
+
if self.mode != "individual":
|
40 |
+
prompt_individual1 = batch["prompt_individual1"]
|
41 |
+
prompt_individual2 = batch["prompt_individual2"]
|
42 |
+
|
43 |
+
batch = copy.deepcopy(batch)
|
44 |
+
batch["motion_lens"][:] = window_size
|
45 |
+
|
46 |
+
batch["text"] = [prompt_interaction]
|
47 |
+
if self.mode != "individual":
|
48 |
+
batch["text_individual1"] = [prompt_individual1]
|
49 |
+
batch["text_individual2"] = [prompt_individual2]
|
50 |
+
|
51 |
+
batch = self.model.forward_test(batch)
|
52 |
+
|
53 |
+
if self.mode == "individual":
|
54 |
+
motion_output = batch["output"][0].reshape(-1, 262)
|
55 |
+
motion_output = self.normalizer.backward(motion_output.cpu().detach().numpy())
|
56 |
+
joints3d = motion_output[:,:22*3].reshape(-1,22,3)
|
57 |
+
joints3d = gaussian_filter1d(joints3d, 1, axis=0, mode='nearest')
|
58 |
+
return joints3d
|
59 |
+
|
60 |
+
motion_output_both = batch["output"][0].reshape(batch["output"][0].shape[0], 2, -1)
|
61 |
+
motion_output_both = self.normalizer.backward(motion_output_both.cpu().detach().numpy())
|
62 |
+
|
63 |
+
sequences = [[], []]
|
64 |
+
for j in range(2):
|
65 |
+
motion_output = motion_output_both[:,j]
|
66 |
+
joints3d = motion_output[:,:22*3].reshape(-1,22,3)
|
67 |
+
joints3d = gaussian_filter1d(joints3d, 1, axis=0, mode='nearest')
|
68 |
+
sequences[j].append(joints3d)
|
69 |
+
|
70 |
+
sequences[0] = np.concatenate(sequences[0], axis=0)
|
71 |
+
sequences[1] = np.concatenate(sequences[1], axis=0)
|
72 |
+
return sequences
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:886d29d2234e2f114ef4221b99a1b01e3d4b739de69c97793c6d869f43606463
|
3 |
+
size 1242367342
|