--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: yg sama. Rasanya konsisten dari dulu:Kalo ke Bandung, wajib banget nyobain makan siang disini. Tempatnya selalu ramee walau cabangnya ada bbrp di 1 jalan yg sama. Rasanya konsisten dari dulu mah, enakkk! Ayam bakar sama sayur asem wajib dipesen. Dan sambelnya yg selalu juara pedesnya, siap2 keringetan - text: jam lebih dan tempatnya panas. Makanannya:Di satu deretan ada 3 warung bu imas dan rame semua Nunggu makan dateng sekitar 1 jam lebih dan tempatnya panas. Makanannya sebenarnya enak2 semua tapi kalo harus antri lama dan temptnya kurang oke mending cari warung makan sunda lain - text: Dari makanan yang luar biasa:Dari makanan yang luar biasa, hingga suasana yang hangat, hingga layanan yang ramah, tempat lingkungan pusat kota ini tidak ketinggalan. - text: Favorite sambal terasi dadak di Bandung sejauh:Favorite sambal terasi dadak di Bandung sejauh ini Harganya pun ramah. Next time balik lagi. - text: ayam goreng/ati-ampela goreng gurih asinnya pas:Rasa ayam goreng/ati-ampela goreng gurih asinnya pas, sayur asem yang isinya banyak dan ras asam-manisnya nyambung, dan sambal leunca-nya enak beutullll.... Pakai petai dan tempe/tahu lebih sempurna. pipeline_tag: text-classification inference: false model-index: - name: SetFit Polarity Model results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8636363636363636 name: Accuracy --- # SetFit Polarity Model This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** id_core_news_trf - **SetFitABSA Aspect Model:** [pahri/setfit-indo-resto-RM-ibu-imas-aspect](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-aspect) - **SetFitABSA Polarity Model:** [pahri/setfit-indo-resto-RM-ibu-imas-polarity](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-polarity) - **Maximum Sequence Length:** 8192 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | positive |