JessyTsu1 commited on
Commit
1e6c368
1 Parent(s): 97b0e6a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -4
README.md CHANGED
@@ -39,20 +39,67 @@ If you would like to learn more about the Machine_Mindset open-source model, we
39
  * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
40
  <br>
41
 
42
- ### Dependency
43
-
44
-
45
  <br>
46
 
47
  ### Quickstart
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  * Use LLaMA-Factory (multi-round conversation)
50
  ```bash
51
  git clone https://github.com/hiyouga/LLaMA-Factory.git
52
  cd LLaMA-Factory
53
  python ./src/cli_demo.py \
54
  --model_name_or_path /path_to_your_local_model \
55
- --template baichuan2
56
  ```
57
  ```python
58
  #Conversation records:
 
39
  * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
40
  <br>
41
 
 
 
 
42
  <br>
43
 
44
  ### Quickstart
45
 
46
+ * Using the HuggingFace Transformers library (single-turn dialogue):
47
+ ```bash
48
+ import torch
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+ from transformers.generation.utils import GenerationConfig
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained("FarReelAILab/Machine_Mindset_en_ENFP", use_fast=False, trust_remote_code=True)
53
+ model = AutoModelForCausalLM.from_pretrained("FarReelAILab/Machine_Mindset_en_ENFP", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
54
+ model.generation_config = GenerationConfig.from_pretrained("FarReelAILab/Machine_Mindset_en_ENFP")
55
+
56
+ messages = []
57
+ messages.append({"role": "user", "content": "What is your MBTI personality type?"})
58
+ response = model.chat(tokenizer, messages)
59
+ print(response)
60
+
61
+ messages.append({'role': 'assistant', 'content': response})
62
+ messages.append({"role": "user", "content": "After spending a day with a group of people, how do you feel when you return home?"})
63
+ response = model.chat(tokenizer, messages)
64
+ print(response)
65
+
66
+ ```
67
+ ```python
68
+
69
+ * Using the HuggingFace Transformers library (multi-turn dialogue):
70
+ ```bash
71
+ import torch
72
+ from transformers import AutoModelForCausalLM, AutoTokenizer
73
+ from transformers.generation.utils import GenerationConfig
74
+ tokenizer = AutoTokenizer.from_pretrained("FarReelAILab/Machine_Mindset_en_ENFP", use_fast=False, trust_remote_code=True)
75
+ model = AutoModelForCausalLM.from_pretrained("FarReelAILab/Machine_Mindset_en_ENFP", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
76
+ model.generation_config = GenerationConfig.from_pretrained("FarReelAILab/Machine_Mindset_en_ENFP")
77
+ messages = []
78
+ print("####Enter 'exit' to exit.")
79
+ print("####Enter 'clear' to clear the chat history.")
80
+ while True:
81
+ user=str(input("User:"))
82
+ if user.strip()=="exit":
83
+ break
84
+ elif user.strip()=="clear":
85
+ messages=[]
86
+ continue
87
+ messages.append({"role": "user", "content": user})
88
+ response = model.chat(tokenizer, messages)
89
+ print("Assistant:", response)
90
+ messages.append({"role": "assistant", "content": str(response)})
91
+
92
+ ```
93
+ ```python
94
+
95
+
96
  * Use LLaMA-Factory (multi-round conversation)
97
  ```bash
98
  git clone https://github.com/hiyouga/LLaMA-Factory.git
99
  cd LLaMA-Factory
100
  python ./src/cli_demo.py \
101
  --model_name_or_path /path_to_your_local_model \
102
+ --template llama2
103
  ```
104
  ```python
105
  #Conversation records: