JessyTsu1 commited on
Commit
5932e5a
1 Parent(s): 5eb30a1

Upload modeling_baichuan.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_baichuan.py +785 -0
modeling_baichuan.py ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+
23
+ from .configuration_baichuan import BaichuanConfig
24
+ from .generation_utils import build_chat_input, TextIterStreamer
25
+
26
+ import math
27
+ from typing import List, Optional, Tuple, Union
28
+ from threading import Thread
29
+
30
+ import torch
31
+ import torch.utils.checkpoint
32
+ from torch import nn
33
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
34
+ from torch.nn import functional as F
35
+ from transformers import PreTrainedModel, PretrainedConfig
36
+ from transformers.activations import ACT2FN
37
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
38
+ from transformers.generation.utils import GenerationConfig
39
+ from transformers.utils import logging, ContextManagers
40
+
41
+ import os
42
+ from contextlib import contextmanager
43
+ logger = logging.get_logger(__name__)
44
+
45
+ try:
46
+ from xformers import ops as xops
47
+ except ImportError:
48
+ xops = None
49
+ logger.warning(
50
+ "Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
51
+ )
52
+
53
+
54
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
55
+ def _make_causal_mask(
56
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
57
+ ):
58
+ """
59
+ Make causal mask used for bi-directional self-attention.
60
+ """
61
+ bsz, tgt_len = input_ids_shape
62
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
63
+ mask_cond = torch.arange(mask.size(-1), device=device)
64
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
65
+ mask = mask.to(dtype)
66
+
67
+ if past_key_values_length > 0:
68
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
69
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
70
+
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ if len(mask.size()) == 3:
76
+ bsz, src_len, _ = mask.size()
77
+ tgt_len = tgt_len if tgt_len is not None else src_len
78
+ expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+ else:
80
+ bsz, src_len = mask.size()
81
+ tgt_len = tgt_len if tgt_len is not None else src_len
82
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
83
+
84
+ inverted_mask = 1.0 - expanded_mask
85
+
86
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
87
+
88
+
89
+ class RMSNorm(nn.Module):
90
+ def __init__(self, hidden_size, eps=1e-6):
91
+ """
92
+ RMSNorm is equivalent to T5LayerNorm
93
+ """
94
+ super().__init__()
95
+ self.weight = nn.Parameter(torch.ones(hidden_size))
96
+ self.variance_epsilon = eps
97
+
98
+ def forward(self, hidden_states):
99
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
100
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
101
+
102
+ # convert into half-precision if necessary
103
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
104
+ hidden_states = hidden_states.to(self.weight.dtype)
105
+
106
+ return self.weight * hidden_states
107
+
108
+
109
+ class RotaryEmbedding(torch.nn.Module):
110
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
+ super().__init__()
112
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
113
+ self.max_seq_len_cached = max_position_embeddings
114
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
115
+ freqs = torch.outer(t, self.inv_freq)
116
+ emb = torch.cat((freqs, freqs), dim=-1)
117
+ self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
118
+ self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
119
+ def forward(self, x, seq_len=None):
120
+ # x: [bs, num_attention_heads, seq_len, head_size]
121
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
122
+ if seq_len > self.max_seq_len_cached:
123
+ self.max_seq_len_cached = seq_len
124
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
125
+ freqs = torch.outer(t, self.inv_freq)
126
+ emb = torch.cat((freqs, freqs), dim=-1)
127
+ self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
128
+ self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
129
+ elif self.cos_cached.device != x.device:
130
+ self.cos_cached = self.cos_cached.to(x.device)
131
+ self.sin_cached = self.sin_cached.to(x.device)
132
+ return (
133
+ self.cos_cached[:, :, :seq_len, ...],
134
+ self.sin_cached[:, :, :seq_len, ...],
135
+ )
136
+
137
+
138
+ def rotate_half(x):
139
+ """Rotates half the hidden dims of the input."""
140
+ x1 = x[..., : x.shape[-1] // 2]
141
+ x2 = x[..., x.shape[-1] // 2:]
142
+ return torch.cat((-x2, x1), dim=-1)
143
+
144
+
145
+ def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
146
+ cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
147
+ sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
148
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
149
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
150
+ q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
151
+ k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
152
+ return q_embed.to(q.dtype), k_embed.to(k.dtype)
153
+
154
+
155
+ class MLP(nn.Module):
156
+ def __init__(
157
+ self,
158
+ hidden_size: int,
159
+ intermediate_size: int,
160
+ hidden_act: str,
161
+ ):
162
+ super().__init__()
163
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
164
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
165
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
166
+ self.act_fn = ACT2FN[hidden_act]
167
+
168
+ def forward(self, x):
169
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
170
+
171
+
172
+ class Attention(nn.Module):
173
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
174
+ def __init__(self, config: BaichuanConfig):
175
+ super().__init__()
176
+ self.config = config
177
+ self.hidden_size = config.hidden_size
178
+ self.num_heads = config.num_attention_heads
179
+ self.head_dim = self.hidden_size // self.num_heads
180
+ self.max_position_embeddings = config.max_position_embeddings
181
+
182
+ if (self.head_dim * self.num_heads) != self.hidden_size:
183
+ raise ValueError(
184
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
185
+ f" and `num_heads`: {self.num_heads})."
186
+ )
187
+ self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
188
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
189
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
190
+
191
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
192
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
193
+
194
+ def forward(
195
+ self,
196
+ hidden_states: torch.Tensor,
197
+ attention_mask: Optional[torch.Tensor] = None,
198
+ position_ids: Optional[torch.LongTensor] = None,
199
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
200
+ output_attentions: bool = False,
201
+ use_cache: bool = False,
202
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
203
+ bsz, q_len, _ = hidden_states.size()
204
+
205
+ proj = self.W_pack(hidden_states)
206
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
207
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
208
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
209
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
210
+
211
+ kv_seq_len = key_states.shape[-2]
212
+ if past_key_value is not None:
213
+ kv_seq_len += past_key_value[0].shape[-2]
214
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
215
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
216
+ # [bsz, nh, t, hd]
217
+
218
+ if past_key_value is not None:
219
+ # reuse k, v, self_attention
220
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
221
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
222
+
223
+ past_key_value = (key_states, value_states) if use_cache else None
224
+ if xops is not None and self.training:
225
+ attn_weights = None
226
+ query_states = query_states.transpose(1, 2)
227
+ key_states = key_states.transpose(1, 2)
228
+ value_states = value_states.transpose(1, 2)
229
+ attn_output = xops.memory_efficient_attention(
230
+ query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
231
+ )
232
+ else:
233
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
234
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
235
+ attn_output = attn_output.transpose(1, 2)
236
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
237
+ attn_output = self.o_proj(attn_output)
238
+
239
+ if not output_attentions:
240
+ attn_weights = None
241
+
242
+ return attn_output, attn_weights, past_key_value
243
+
244
+
245
+ class DecoderLayer(nn.Module):
246
+ def __init__(self, config: BaichuanConfig):
247
+ super().__init__()
248
+ self.hidden_size = config.hidden_size
249
+ self.self_attn = Attention(config=config)
250
+ self.mlp = MLP(
251
+ hidden_size=self.hidden_size,
252
+ intermediate_size=config.intermediate_size,
253
+ hidden_act=config.hidden_act,
254
+ )
255
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
257
+
258
+ def forward(
259
+ self,
260
+ hidden_states: torch.Tensor,
261
+ attention_mask: Optional[torch.Tensor] = None,
262
+ position_ids: Optional[torch.LongTensor] = None,
263
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
264
+ output_attentions: Optional[bool] = False,
265
+ use_cache: Optional[bool] = False,
266
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
267
+
268
+ residual = hidden_states
269
+
270
+ hidden_states = self.input_layernorm(hidden_states)
271
+
272
+ # Self Attention
273
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
274
+ hidden_states=hidden_states,
275
+ attention_mask=attention_mask,
276
+ position_ids=position_ids,
277
+ past_key_value=past_key_value,
278
+ output_attentions=output_attentions,
279
+ use_cache=use_cache,
280
+ )
281
+ hidden_states = residual + hidden_states
282
+
283
+ # Fully Connected
284
+ residual = hidden_states
285
+ hidden_states = self.post_attention_layernorm(hidden_states)
286
+ hidden_states = self.mlp(hidden_states)
287
+ hidden_states = residual + hidden_states
288
+
289
+ outputs = (hidden_states,)
290
+
291
+ if output_attentions:
292
+ outputs += (self_attn_weights,)
293
+
294
+ if use_cache:
295
+ outputs += (present_key_value,)
296
+
297
+ return outputs
298
+
299
+
300
+ class BaichuanPreTrainedModel(PreTrainedModel):
301
+ config_class = BaichuanConfig
302
+ base_model_prefix = "model"
303
+ supports_gradient_checkpointing = True
304
+ _no_split_modules = ["DecoderLayer"]
305
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
306
+
307
+ def _init_weights(self, module):
308
+ std = self.config.initializer_range
309
+ if isinstance(module, nn.Linear):
310
+ module.weight.data.normal_(mean=0.0, std=std)
311
+ if module.bias is not None:
312
+ module.bias.data.zero_()
313
+ elif isinstance(module, nn.Embedding):
314
+ module.weight.data.normal_(mean=0.0, std=std)
315
+ if module.padding_idx is not None:
316
+ module.weight.data[module.padding_idx].zero_()
317
+
318
+ def _set_gradient_checkpointing(self, module, value=False):
319
+ if isinstance(module, BaichuanModel):
320
+ module.gradient_checkpointing = value
321
+
322
+
323
+ class BaichuanModel(BaichuanPreTrainedModel):
324
+ def __init__(self, config: BaichuanConfig):
325
+ super().__init__(config)
326
+ self.padding_idx = config.pad_token_id
327
+ self.vocab_size = config.vocab_size
328
+
329
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
330
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
331
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
332
+
333
+ self.gradient_checkpointing = False
334
+ # Initialize weights and apply final processing
335
+ self.post_init()
336
+
337
+ def get_input_embeddings(self):
338
+ return self.embed_tokens
339
+
340
+ def set_input_embeddings(self, value):
341
+ self.embed_tokens = value
342
+
343
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
344
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
345
+ # create causal mask
346
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
347
+ combined_attention_mask = None
348
+ if input_shape[-1] > 1:
349
+ combined_attention_mask = _make_causal_mask(
350
+ input_shape,
351
+ inputs_embeds.dtype,
352
+ device=inputs_embeds.device,
353
+ past_key_values_length=past_key_values_length,
354
+ )
355
+
356
+ if attention_mask is not None:
357
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
358
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
359
+ inputs_embeds.device
360
+ )
361
+ combined_attention_mask = (
362
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
363
+ )
364
+
365
+ return combined_attention_mask
366
+
367
+ def forward(
368
+ self,
369
+ input_ids: torch.LongTensor = None,
370
+ attention_mask: Optional[torch.Tensor] = None,
371
+ position_ids: Optional[torch.LongTensor] = None,
372
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
373
+ inputs_embeds: Optional[torch.FloatTensor] = None,
374
+ use_cache: Optional[bool] = None,
375
+ output_attentions: Optional[bool] = None,
376
+ output_hidden_states: Optional[bool] = None,
377
+ return_dict: Optional[bool] = None,
378
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
379
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
380
+ output_hidden_states = (
381
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
382
+ )
383
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
384
+
385
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
386
+
387
+ # retrieve input_ids and inputs_embeds
388
+ if input_ids is not None and inputs_embeds is not None:
389
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
390
+ elif input_ids is not None:
391
+ batch_size, seq_length = input_ids.shape
392
+ elif inputs_embeds is not None:
393
+ batch_size, seq_length, _ = inputs_embeds.shape
394
+ else:
395
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
396
+
397
+ seq_length_with_past = seq_length
398
+ past_key_values_length = 0
399
+
400
+ if past_key_values is not None:
401
+ past_key_values_length = past_key_values[0][0].shape[2]
402
+ seq_length_with_past = seq_length_with_past + past_key_values_length
403
+
404
+ if position_ids is None:
405
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
406
+ position_ids = torch.arange(
407
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
408
+ )
409
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
410
+ else:
411
+ position_ids = position_ids.view(-1, seq_length).long()
412
+
413
+ if inputs_embeds is None:
414
+ inputs_embeds = self.embed_tokens(input_ids)
415
+ # embed positions
416
+ if attention_mask is None:
417
+ attention_mask = torch.ones(
418
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
419
+ )
420
+ attention_mask = self._prepare_decoder_attention_mask(
421
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
422
+ )
423
+
424
+ hidden_states = inputs_embeds
425
+
426
+ if self.gradient_checkpointing and self.training:
427
+ if use_cache:
428
+ logger.warning_once(
429
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
430
+ )
431
+ use_cache = False
432
+
433
+ # decoder layers
434
+ all_hidden_states = () if output_hidden_states else None
435
+ all_self_attns = () if output_attentions else None
436
+ next_decoder_cache = () if use_cache else None
437
+
438
+ for idx, decoder_layer in enumerate(self.layers):
439
+ if output_hidden_states:
440
+ all_hidden_states += (hidden_states,)
441
+
442
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
443
+
444
+ if self.gradient_checkpointing and self.training:
445
+
446
+ def create_custom_forward(module):
447
+ def custom_forward(*inputs):
448
+ # None for past_key_value
449
+ return module(*inputs, output_attentions, None)
450
+
451
+ return custom_forward
452
+
453
+ layer_outputs = torch.utils.checkpoint.checkpoint(
454
+ create_custom_forward(decoder_layer),
455
+ hidden_states,
456
+ attention_mask,
457
+ position_ids,
458
+ None,
459
+ )
460
+ else:
461
+ layer_outputs = decoder_layer(
462
+ hidden_states,
463
+ attention_mask=attention_mask,
464
+ position_ids=position_ids,
465
+ past_key_value=past_key_value,
466
+ output_attentions=output_attentions,
467
+ use_cache=use_cache,
468
+ )
469
+
470
+ hidden_states = layer_outputs[0]
471
+
472
+ if use_cache:
473
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
474
+
475
+ if output_attentions:
476
+ all_self_attns += (layer_outputs[1],)
477
+
478
+ hidden_states = self.norm(hidden_states)
479
+
480
+ # add hidden states from the last decoder layer
481
+ if output_hidden_states:
482
+ all_hidden_states += (hidden_states,)
483
+
484
+ next_cache = next_decoder_cache if use_cache else None
485
+ if not return_dict:
486
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
487
+ return BaseModelOutputWithPast(
488
+ last_hidden_state=hidden_states,
489
+ past_key_values=next_cache,
490
+ hidden_states=all_hidden_states,
491
+ attentions=all_self_attns,
492
+ )
493
+
494
+
495
+ class NormHead(nn.Module):
496
+ def __init__(self, hidden_size, vocab_size, bias=False):
497
+ super().__init__()
498
+ self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
499
+ nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
500
+ self.first_flag = True
501
+
502
+ def forward(self, hidden_states):
503
+ if self.training:
504
+ norm_weight = nn.functional.normalize(self.weight)
505
+ self.first_flag = True
506
+ elif self.first_flag:
507
+ self.first_flag = False
508
+ self.weight.data = nn.functional.normalize(self.weight)
509
+ norm_weight = self.weight
510
+ else:
511
+ norm_weight = self.weight
512
+ return nn.functional.linear(hidden_states, norm_weight)
513
+
514
+ _init_weights = True
515
+ @contextmanager
516
+ def no_init_weights(_enable=True):
517
+ global _init_weights
518
+ old_init_weights = _init_weights
519
+ if _enable:
520
+ _init_weights = False
521
+ try:
522
+ yield
523
+ finally:
524
+ _init_weights = old_init_weights
525
+
526
+ class BaichuanForCausalLM(BaichuanPreTrainedModel):
527
+ def __init__(self, config, *model_args, **model_kwargs):
528
+ super().__init__(config, *model_args, **model_kwargs)
529
+ self.model = BaichuanModel(config)
530
+
531
+ self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
532
+ if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
533
+ try:
534
+ from .quantizer import quantize_offline, init_model_weight_int4
535
+ except ImportError:
536
+ raise ImportError(f"Needs QLinear to run quantize.")
537
+ quantize_offline(self, 4)
538
+ # Initialize weights and apply final processing
539
+ self.post_init()
540
+
541
+ def get_input_embeddings(self):
542
+ return self.model.embed_tokens
543
+
544
+ def set_input_embeddings(self, value):
545
+ self.model.embed_tokens = value
546
+
547
+ def get_output_embeddings(self):
548
+ return self.lm_head
549
+
550
+ def set_output_embeddings(self, new_embeddings):
551
+ self.lm_head = new_embeddings
552
+
553
+ def set_decoder(self, decoder):
554
+ self.model = decoder
555
+
556
+ def get_decoder(self):
557
+ return self.model
558
+
559
+ @classmethod
560
+ def from_pretrained(
561
+ cls,
562
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
563
+ *model_args,
564
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
565
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
566
+ ignore_mismatched_sizes: bool = False,
567
+ force_download: bool = False,
568
+ local_files_only: bool = False,
569
+ token: Optional[Union[str, bool]] = None,
570
+ revision: str = "main",
571
+ use_safetensors: bool = None,
572
+ **kwargs,
573
+ ):
574
+ # Load config if we don't provide a configuration
575
+ if not isinstance(config, PretrainedConfig):
576
+ config_path = config if config is not None else pretrained_model_name_or_path
577
+ config, model_kwargs = cls.config_class.from_pretrained(
578
+ config_path,
579
+ cache_dir=cache_dir,
580
+ return_unused_kwargs=True,
581
+ force_download=force_download,
582
+ resume_download=False,
583
+ proxies=None,
584
+ local_files_only=local_files_only,
585
+ token=token,
586
+ revision=revision,
587
+ subfolder="",
588
+ _from_auto=False,
589
+ _from_pipeline=None,
590
+ **kwargs,
591
+ )
592
+ else:
593
+ model_kwargs = kwargs
594
+
595
+ if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
596
+ try:
597
+ from .quantizer import init_model_weight_int4
598
+ from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
599
+ from accelerate.utils import CustomDtype
600
+ from accelerate.utils import get_balanced_memory
601
+ except ImportError:
602
+ raise ImportError(f"Needs import model weight init func to run quantize.")
603
+ # Instantiate model.
604
+ init_contexts = [no_init_weights(_enable=True)]
605
+ init_contexts.append(init_empty_weights())
606
+ with ContextManagers(init_contexts):
607
+ model = cls(config)
608
+
609
+ model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
610
+ state_dict = torch.load(model_file, map_location="cpu")
611
+ model.is_quantized = True
612
+
613
+ device_map = kwargs.pop("device_map", None)
614
+ torch_dtype = kwargs.pop("torch_dtype", None)
615
+
616
+ if device_map is not None:
617
+ kwargs = {"no_split_module_classes": model._no_split_modules}
618
+ target_dtype = CustomDtype.INT4
619
+ max_memory = get_balanced_memory(
620
+ model,
621
+ dtype=target_dtype,
622
+ low_zero=(device_map == "balanced_low_0"),
623
+ max_memory=None,
624
+ **kwargs,
625
+ )
626
+ kwargs["max_memory"] = max_memory
627
+ device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
628
+
629
+ model = init_model_weight_int4(config, model, state_dict)
630
+
631
+ # Set model in evaluation mode to deactivate DropOut modules by default
632
+ model.eval()
633
+ # If it is a model with generation capabilities, attempt to load the generation config
634
+ if model.can_generate():
635
+ try:
636
+ model.generation_config = GenerationConfig.from_pretrained(
637
+ pretrained_model_name_or_path,
638
+ cache_dir=cache_dir,
639
+ force_download=force_download,
640
+ resume_download=False,
641
+ proxies=None,
642
+ local_files_only=local_files_only,
643
+ token=token,
644
+ revision=revision,
645
+ subfolder="",
646
+ _from_auto=False,
647
+ _from_pipeline=None,
648
+ **kwargs,
649
+ )
650
+ except (OSError, TypeError):
651
+ logger.info(
652
+ "Generation config file not found, using a generation config created from the model config."
653
+ )
654
+ pass
655
+
656
+ if device_map is not None:
657
+ dispatch_model(model, device_map=device_map)
658
+
659
+ return model
660
+ return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
661
+ config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
662
+ force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
663
+ use_safetensors=use_safetensors, **kwargs)
664
+
665
+ def forward(
666
+ self,
667
+ input_ids: torch.LongTensor = None,
668
+ attention_mask: Optional[torch.Tensor] = None,
669
+ position_ids: Optional[torch.LongTensor] = None,
670
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
671
+ inputs_embeds: Optional[torch.FloatTensor] = None,
672
+ labels: Optional[torch.LongTensor] = None,
673
+ use_cache: Optional[bool] = None,
674
+ output_attentions: Optional[bool] = None,
675
+ output_hidden_states: Optional[bool] = None,
676
+ return_dict: Optional[bool] = None,
677
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
678
+
679
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
680
+ output_hidden_states = (
681
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
682
+ )
683
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
684
+
685
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
686
+ outputs = self.model(
687
+ input_ids=input_ids,
688
+ attention_mask=attention_mask,
689
+ position_ids=position_ids,
690
+ past_key_values=past_key_values,
691
+ inputs_embeds=inputs_embeds,
692
+ use_cache=use_cache,
693
+ output_attentions=output_attentions,
694
+ output_hidden_states=output_hidden_states,
695
+ return_dict=return_dict,
696
+ )
697
+
698
+ hidden_states = outputs[0]
699
+ logits = self.lm_head(hidden_states)
700
+ loss = None
701
+ if labels is not None:
702
+ # Shift so that tokens < n predict n
703
+ shift_logits = logits[..., :-1, :].contiguous()
704
+ shift_labels = labels[..., 1:].contiguous()
705
+ # Flatten the tokens
706
+ loss_fct = CrossEntropyLoss()
707
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
708
+ shift_labels = shift_labels.view(-1)
709
+ softmax_normalizer = shift_logits.max(-1).values ** 2
710
+ z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
711
+ # Enable model parallelism
712
+ shift_labels = shift_labels.to(shift_logits.device)
713
+ loss = loss_fct(shift_logits, shift_labels) + z_loss
714
+
715
+ if not return_dict:
716
+ output = (logits,) + outputs[1:]
717
+ return (loss,) + output if loss is not None else output
718
+
719
+ return CausalLMOutputWithPast(
720
+ loss=loss,
721
+ logits=logits,
722
+ past_key_values=outputs.past_key_values,
723
+ hidden_states=outputs.hidden_states,
724
+ attentions=outputs.attentions,
725
+ )
726
+
727
+ def prepare_inputs_for_generation(
728
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
729
+ ):
730
+ if past_key_values:
731
+ input_ids = input_ids[:, -1:]
732
+
733
+ position_ids = kwargs.get("position_ids", None)
734
+ if attention_mask is not None and position_ids is None:
735
+ # create position_ids on the fly for batch generation
736
+ position_ids = attention_mask.long().cumsum(-1) - 1
737
+ position_ids.masked_fill_(attention_mask == 0, 1)
738
+ if past_key_values:
739
+ position_ids = position_ids[:, -1].unsqueeze(-1)
740
+
741
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
742
+ if inputs_embeds is not None and past_key_values is None:
743
+ model_inputs = {"inputs_embeds": inputs_embeds}
744
+ else:
745
+ model_inputs = {"input_ids": input_ids}
746
+
747
+ model_inputs.update(
748
+ {
749
+ "position_ids": position_ids,
750
+ "past_key_values": past_key_values,
751
+ "use_cache": kwargs.get("use_cache"),
752
+ "attention_mask": attention_mask,
753
+ }
754
+ )
755
+ return model_inputs
756
+
757
+ @staticmethod
758
+ def _reorder_cache(past_key_values, beam_idx):
759
+ reordered_past = ()
760
+ for layer_past in past_key_values:
761
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
762
+ return reordered_past
763
+
764
+ def quantize(self, bits: int):
765
+ try:
766
+ from .quantizer import quantize_online
767
+ except ImportError:
768
+ raise ImportError(f"Needs QLinear to run quantize.")
769
+ return quantize_online(self, bits)
770
+
771
+ def chat(self, tokenizer, messages: List[dict], stream=False,
772
+ generation_config: Optional[GenerationConfig]=None):
773
+ generation_config = generation_config or self.generation_config
774
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
775
+ if stream:
776
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
777
+ Thread(target=self.generate, kwargs=dict(
778
+ inputs=input_ids, streamer=streamer,
779
+ generation_config=generation_config,
780
+ )).start()
781
+ return streamer
782
+ else:
783
+ outputs = self.generate(input_ids, generation_config=generation_config)
784
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
785
+ return response