from transformers import PretrainedConfig class AutextificationMTLConfig(PretrainedConfig): model_type = "custom-text-classifier" def __init__( self, transformer_name: str = "xlm-roberta-base", hidden_nodes: int = 64, threshold: float = 0.9919, **kwargs, ): if hidden_nodes <= 0: raise ValueError( f"`hidden_size` must be a positive number, got {hidden_nodes}." ) self.transformer_name = transformer_name self.hidden_nodes = hidden_nodes self.threshold = threshold super().__init__(**kwargs)