File size: 963 Bytes
5b714ca
feb30f0
5b714ca
 
 
 
b3bae35
5b714ca
 
 
7338d83
5b714ca
b3bae35
5b714ca
b3bae35
5b714ca
7338d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddbb88
7338d83
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
library_name: tf-keras
---

## Model description

BERT-based model for classifying fake news written in Romanian.

## Intended uses & limitations

It predicts one of six types of fake news (in order: "fabricated", "fictional", "plausible", "propaganda", "real", "satire").

It also predicts if the article talks about health or politics.

## How to use the model

Load the model with:

```python
from huggingface_hub import from_pretrained_keras

model = from_pretrained_keras("pandrei7/fakenews-mtl")
```

Use this tokenizer: `readerbench/RoBERT-base`.

The input length should be 512. You can tokenize the input like this:

```python
tokenizer(
    your_text,
    padding="max_length",
    truncation=True,
    max_length=512,
    return_tensors="tf",
)
```

## Training data

The model was trained and evaluated on the [fakerom](https://www.tagtog.com/fakerom/fakerom/) dataset.

## Evaluation results

The accuracy of predicting fake news was roughly 75%.