File size: 8,911 Bytes
b6e71bb 1889462 2be5e0e 0ad4395 2be5e0e b6e71bb 0ad4395 e987f7e 0ad4395 c9e9ae7 0ad4395 c9e9ae7 0ad4395 57135e7 0ad4395 57135e7 0ad4395 8e4bbbe 2be5e0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
language:
- en
license: llama2
library_name: transformers
datasets:
- pankajmathur/orca_mini_v1_dataset
- pankajmathur/dolly-v2_orca
- pankajmathur/WizardLM_Orca
- pankajmathur/alpaca_orca
- ehartford/dolphin
model-index:
- name: model_009
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/model_009
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/model_009
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/model_009
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.72
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/model_009
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/model_009
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.42
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/model_009
name: Open LLM Leaderboard
---
# model_009
A Llama2-70b model trained on Orca Style datasets.
**P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam**
## Evaluation
We evaluated model_009 on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|||
|:------:|:-------:|
|**Task**|**Value**|
|*ARC*|0.7159|
|*HellaSwag*|0.8771|
|*MMLU*|0.6943|
|*TruthfulQA*|0.6072|
|*Winogrande*|0.8232|
|*GSM8k*|0.3942|
|*DROP*|0.4401|
|**Total Average**|**0.6503**|
### Prompt Format
```
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.
### User:
Tell me about Orcas.
### Assistant:
```
#### OobaBooga Instructions:
This model required upto 45GB GPU VRAM in 4bit so it can be loaded directly on Single RTX 6000/L40/A40/A100/H100 GPU or Double RTX 4090/L4/A10/RTX 3090/RTX A5000
So, if you have access to Machine with 45GB GPU VRAM and have installed [OobaBooga Web UI](https://github.com/oobabooga/text-generation-webui) on it.
You can just download this model by using HF repo link directly on OobaBooga Web UI "Model" Tab/Page & Just use **load-in-4bit** option in it.
![model_load_screenshot](https://huggingface.co/pankajmathur/model_101/resolve/main/oobabooga_model_load_screenshot.png)
After that go to Default Tab/Page on OobaBooga Web UI and **copy paste above prompt format into Input** and Enjoy!
![default_input_screenshot](https://huggingface.co/pankajmathur/model_101/resolve/main/default_input_screenshot.png)
<br>
#### Code Instructions:
Below shows a code example on how to use this model
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("pankajmathur/model_009")
model = AutoModelForCausalLM.from_pretrained(
"pankajmathur/model_009",
torch_dtype=torch.float16,
load_in_4bit=True,
low_cpu_mem_usage=True,
device_map="auto"
)
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
#generate text steps
instruction = "Tell me about Orcas."
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
#### Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary.
### Citiation:
Please kindly cite using the following BibTeX:
```
@misc{model_009,
author = {Pankaj Mathur},
title = {model_009: An Orca Style Llama2-70b model},
month = {August},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/pankajmathur/model_009},
}
```
```
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@software{touvron2023llama2,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__model_009)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 65.03 |
| ARC (25-shot) | 71.59 |
| HellaSwag (10-shot) | 87.7 |
| MMLU (5-shot) | 69.43 |
| TruthfulQA (0-shot) | 60.72 |
| Winogrande (5-shot) | 82.32 |
| GSM8K (5-shot) | 39.42 |
| DROP (3-shot) | 44.01 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__model_009)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.53|
|AI2 Reasoning Challenge (25-Shot)|71.59|
|HellaSwag (10-Shot) |87.70|
|MMLU (5-Shot) |69.43|
|TruthfulQA (0-shot) |60.72|
|Winogrande (5-shot) |82.32|
|GSM8k (5-shot) |39.42|
|