--- datasets: - psmathur/orca_minis_uncensored_dataset language: - en library_name: transformers --- # orca_mini_v3_13b A Llama2-13b model trained on Orca Style datasets. **I am actively seeking sponsorship and partnership opportunities. If you're interested, please connect with me at www.linkedin.com/in/pankajam.** ## Evaluation We evaluated orca_mini_v3_13b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) ||||| |:------:|:--------:|:-------:|:--------:| |**Task**|**Metric**|**Value**|**Stderr**| |*arc_challenge*|acc_norm|0.6314|0.0141| |*hellaswag*|acc_norm|0.8242|0.0038| |*mmlu*|acc_norm|0.5637|0.0351| |*truthfulqa_mc*|mc2|0.5127|0.0157| |**Total Average**|-|**0.6329877193**|| ## Example Usage Here is the prompt format ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: Tell me about Orcas. ### Assistant: ``` Below shows a code example on how to use this model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_13b", use_fast=False) model = AutoModelForCausalLM.from_pretrained("psmathur/orca_mini_v3_13b", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n" #generate text steps instruction = "Tell me about Orcas." prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` #### Limitations & Biases: While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. Exercise caution and cross-check information when necessary. ### Citiation: Please kindly cite using the following BibTeX: ``` @misc{orca_mini_v3_13b, author = {Pankaj Mathur}, title = {orca_mini_v3_13b: An explain tuned Llama2-13b model}, year = {2023}, publisher = {GitHub, HuggingFace}, journal = {GitHub repository, HuggingFace repository}, howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_13b}, } ``` ``` @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @software{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```