File size: 18,361 Bytes
f378b77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# general
import argparse
import os
import sys
from datetime import datetime
import logging
from logging.handlers import RotatingFileHandler
from pathlib import Path

# ML
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoTokenizer

# DL
from src.models import DNikudModel, ModelConfig
from src.models_utils import training, evaluate, predict
from src.plot_helpers import (
    generate_plot_by_nikud_dagesh_sin_dict,
    generate_word_and_letter_accuracy_plot,
)
from src.running_params import BATCH_SIZE, MAX_LENGTH_SEN
from src.utiles_data import (
    NikudDataset,
    Nikud,
    create_missing_folders,
    extract_text_to_compare_nakdimon,
)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
assert DEVICE == "cuda"


def get_logger(
    log_level, name_func, date_time=datetime.now().strftime("%d_%m_%y__%H_%M")
):
    log_location = os.path.join(
        os.path.join(Path(__file__).parent, "logging"),
        f"log_model_{name_func}_{date_time}",
    )
    create_missing_folders(log_location)

    log_format = "%(asctime)s %(levelname)-8s Thread_%(thread)-6d ::: %(funcName)s(%(lineno)d) ::: %(message)s"
    logger = logging.getLogger("algo")
    logger.setLevel(getattr(logging, log_level))
    cnsl_log_formatter = logging.Formatter(log_format)
    cnsl_handler = logging.StreamHandler()
    cnsl_handler.setFormatter(cnsl_log_formatter)
    cnsl_handler.setLevel(log_level)
    logger.addHandler(cnsl_handler)

    create_missing_folders(log_location)

    file_location = os.path.join(log_location, "Diacritization_Model_DEBUG.log")
    file_log_formatter = logging.Formatter(log_format)

    SINGLE_LOG_SIZE = 2 * 1024 * 1024  # in Bytes
    MAX_LOG_FILES = 20
    file_handler = RotatingFileHandler(
        file_location, mode="a", maxBytes=SINGLE_LOG_SIZE, backupCount=MAX_LOG_FILES
    )
    file_handler.setFormatter(file_log_formatter)
    file_handler.setLevel(log_level)
    logger.addHandler(file_handler)

    return logger


def evaluate_text(
    path,
    dnikud_model,
    tokenizer_tavbert,
    logger,
    plots_folder=None,
    batch_size=BATCH_SIZE,
):
    path_name = os.path.basename(path)

    msg = f"evaluate text: {path_name} on D-nikud Model"
    logger.debug(msg)

    if os.path.isfile(path):
        dataset = NikudDataset(
            tokenizer_tavbert, file=path, logger=logger, max_length=MAX_LENGTH_SEN
        )
    elif os.path.isdir(path):
        dataset = NikudDataset(
            tokenizer_tavbert, folder=path, logger=logger, max_length=MAX_LENGTH_SEN
        )
    else:
        raise Exception("input path doesnt exist")

    dataset.prepare_data(name="evaluate")
    mtb_dl = torch.utils.data.DataLoader(dataset.prepered_data, batch_size=batch_size)

    word_level_correct, letter_level_correct_dev = evaluate(
        dnikud_model, mtb_dl, plots_folder, device=DEVICE
    )

    msg = (
        f"Dnikud Model\n{path_name} evaluate\nLetter level accuracy:{letter_level_correct_dev}\n"
        f"Word level accuracy: {word_level_correct}"
    )
    logger.debug(msg)


def predict_text(
    text_file,
    tokenizer_tavbert,
    output_file,
    logger,
    dnikud_model,
    compare_nakdimon=False,
):
    dataset = NikudDataset(
        tokenizer_tavbert, file=text_file, logger=logger, max_length=MAX_LENGTH_SEN
    )

    dataset.prepare_data(name="prediction")
    mtb_prediction_dl = torch.utils.data.DataLoader(
        dataset.prepered_data, batch_size=BATCH_SIZE
    )
    all_labels = predict(dnikud_model, mtb_prediction_dl, DEVICE)
    text_data_with_labels = dataset.back_2_text(labels=all_labels)

    if output_file is None:
        for line in text_data_with_labels:
            print(line)
    else:
        with open(output_file, "w", encoding="utf-8") as f:
            if compare_nakdimon:
                f.write(extract_text_to_compare_nakdimon(text_data_with_labels))
            else:
                f.write(text_data_with_labels)


def predict_folder(
    folder,
    output_folder,
    logger,
    tokenizer_tavbert,
    dnikud_model,
    compare_nakdimon=False,
):
    create_missing_folders(output_folder)

    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)

        if filename.lower().endswith(".txt") and os.path.isfile(file_path):
            output_file = os.path.join(output_folder, filename)
            predict_text(
                file_path,
                output_file=output_file,
                logger=logger,
                tokenizer_tavbert=tokenizer_tavbert,
                dnikud_model=dnikud_model,
                compare_nakdimon=compare_nakdimon,
            )
        elif (
            os.path.isdir(file_path) and filename != ".git" and filename != "README.md"
        ):
            sub_folder = file_path
            sub_folder_output = os.path.join(output_folder, filename)
            predict_folder(
                sub_folder,
                sub_folder_output,
                logger,
                tokenizer_tavbert,
                dnikud_model,
                compare_nakdimon=compare_nakdimon,
            )


def update_compare_folder(folder, output_folder):
    create_missing_folders(output_folder)

    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)

        if filename.lower().endswith(".txt") and os.path.isfile(file_path):
            output_file = os.path.join(output_folder, filename)
            with open(file_path, "r", encoding="utf-8") as f:
                text_data_with_labels = f.read()
            with open(output_file, "w", encoding="utf-8") as f:
                f.write(extract_text_to_compare_nakdimon(text_data_with_labels))
        elif os.path.isdir(file_path) and filename != ".git":
            sub_folder = file_path
            sub_folder_output = os.path.join(output_folder, filename)
            update_compare_folder(sub_folder, sub_folder_output)


def check_files_excepted(folder):
    for filename in os.listdir(folder):
        file_path = os.path.join(folder, filename)

        if filename.lower().endswith(".txt") and os.path.isfile(file_path):
            try:
                x = NikudDataset(None, file=file_path)
            except:
                print(f"failed in file: {filename}")
        elif os.path.isdir(file_path) and filename != ".git":
            check_files_excepted(file_path)


def do_predict(
    input_path, output_path, tokenizer_tavbert, logger, dnikud_model, compare_nakdimon
):
    if os.path.isdir(input_path):
        predict_folder(
            input_path,
            output_path,
            logger,
            tokenizer_tavbert,
            dnikud_model,
            compare_nakdimon=compare_nakdimon,
        )
    elif os.path.isfile(input_path):
        predict_text(
            input_path,
            output_file=output_path,
            logger=logger,
            tokenizer_tavbert=tokenizer_tavbert,
            dnikud_model=dnikud_model,
            compare_nakdimon=compare_nakdimon,
        )
    else:
        raise Exception("Input file not exist")


def evaluate_folder(folder_path, logger, dnikud_model, tokenizer_tavbert, plots_folder):
    msg = f"evaluate sub folder: {folder_path}"
    logger.info(msg)

    evaluate_text(
        folder_path,
        dnikud_model=dnikud_model,
        tokenizer_tavbert=tokenizer_tavbert,
        logger=logger,
        plots_folder=plots_folder,
        batch_size=BATCH_SIZE,
    )

    msg = f"\n***************************************\n"
    logger.info(msg)

    for sub_folder_name in os.listdir(folder_path):
        sub_folder_path = os.path.join(folder_path, sub_folder_name)

        if (
            not os.path.isdir(sub_folder_path)
            or sub_folder_path == ".git"
            or "not_use" in sub_folder_path
            or "NakdanResults" in sub_folder_path
        ):
            continue

        evaluate_folder(
            sub_folder_path, logger, dnikud_model, tokenizer_tavbert, plots_folder
        )


def do_evaluate(
    input_path,
    logger,
    dnikud_model,
    tokenizer_tavbert,
    plots_folder,
    eval_sub_folders=False,
):
    msg = f"evaluate all_data: {input_path}"
    logger.info(msg)

    evaluate_text(
        input_path,
        dnikud_model=dnikud_model,
        tokenizer_tavbert=tokenizer_tavbert,
        logger=logger,
        plots_folder=plots_folder,
        batch_size=BATCH_SIZE,
    )

    msg = f"\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n"
    logger.info(msg)

    if eval_sub_folders:
        for sub_folder_name in os.listdir(input_path):
            sub_folder_path = os.path.join(input_path, sub_folder_name)

            if (
                not os.path.isdir(sub_folder_path)
                or sub_folder_path == ".git"
                or "not_use" in sub_folder_path
                or "NakdanResults" in sub_folder_path
            ):
                continue

            evaluate_folder(
                sub_folder_path, logger, dnikud_model, tokenizer_tavbert, plots_folder
            )


def do_train(
    logger,
    plots_folder,
    dir_model_config,
    tokenizer_tavbert,
    dnikud_model,
    output_trained_model_dir,
    data_folder,
    n_epochs,
    checkpoints_frequency,
    learning_rate,
    batch_size,
):
    msg = "Loading data..."
    logger.debug(msg)

    dataset_train = NikudDataset(
        tokenizer_tavbert,
        folder=os.path.join(data_folder, "train"),
        logger=logger,
        max_length=MAX_LENGTH_SEN,
        is_train=True,
    )
    dataset_dev = NikudDataset(
        tokenizer=tokenizer_tavbert,
        folder=os.path.join(data_folder, "dev"),
        logger=logger,
        max_length=dataset_train.max_length,
        is_train=True,
    )
    dataset_test = NikudDataset(
        tokenizer=tokenizer_tavbert,
        folder=os.path.join(data_folder, "test"),
        logger=logger,
        max_length=dataset_train.max_length,
        is_train=True,
    )

    dataset_train.show_data_labels(plots_folder=plots_folder)

    msg = f"Max length of data: {dataset_train.max_length}"
    logger.debug(msg)

    msg = (
        f"Num rows in train data: {len(dataset_train.data)}, "
        f"Num rows in dev data: {len(dataset_dev.data)}, "
        f"Num rows in test data: {len(dataset_test.data)}"
    )
    logger.debug(msg)

    msg = "Loading tokenizer and prepare data..."
    logger.debug(msg)

    dataset_train.prepare_data(name="train")
    dataset_dev.prepare_data(name="dev")
    dataset_test.prepare_data(name="test")

    mtb_train_dl = torch.utils.data.DataLoader(
        dataset_train.prepered_data, batch_size=batch_size
    )
    mtb_dev_dl = torch.utils.data.DataLoader(
        dataset_dev.prepered_data, batch_size=batch_size
    )

    if not os.path.isfile(dir_model_config):
        our_model_config = ModelConfig(dataset_train.max_length)
        our_model_config.save_to_file(dir_model_config)

    optimizer = torch.optim.Adam(dnikud_model.parameters(), lr=learning_rate)

    msg = "training..."
    logger.debug(msg)

    criterion_nikud = nn.CrossEntropyLoss(ignore_index=Nikud.PAD_OR_IRRELEVANT).to(
        DEVICE
    )
    criterion_dagesh = nn.CrossEntropyLoss(ignore_index=Nikud.PAD_OR_IRRELEVANT).to(
        DEVICE
    )
    criterion_sin = nn.CrossEntropyLoss(ignore_index=Nikud.PAD_OR_IRRELEVANT).to(DEVICE)

    training_params = {
        "n_epochs": n_epochs,
        "checkpoints_frequency": checkpoints_frequency,
    }
    (
        best_model_details,
        best_accuracy,
        epochs_loss_train_values,
        steps_loss_train_values,
        loss_dev_values,
        accuracy_dev_values,
    ) = training(
        dnikud_model,
        mtb_train_dl,
        mtb_dev_dl,
        criterion_nikud,
        criterion_dagesh,
        criterion_sin,
        training_params,
        logger,
        output_trained_model_dir,
        optimizer,
        device=DEVICE,
    )

    generate_plot_by_nikud_dagesh_sin_dict(
        epochs_loss_train_values, "Train epochs loss", "Loss", plots_folder
    )
    generate_plot_by_nikud_dagesh_sin_dict(
        steps_loss_train_values, "Train steps loss", "Loss", plots_folder
    )
    generate_plot_by_nikud_dagesh_sin_dict(
        loss_dev_values, "Dev epochs loss", "Loss", plots_folder
    )
    generate_plot_by_nikud_dagesh_sin_dict(
        accuracy_dev_values, "Dev accuracy", "Accuracy", plots_folder
    )
    generate_word_and_letter_accuracy_plot(
        accuracy_dev_values, "Accuracy", plots_folder
    )

    msg = "Done"
    logger.info(msg)


if __name__ == "__main__":
    tokenizer_tavbert = AutoTokenizer.from_pretrained("tau/tavbert-he")

    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description="""Predict D-nikud""",
    )
    parser.add_argument(
        "-l",
        "--log",
        dest="log_level",
        choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
        default="DEBUG",
        help="Set the logging level",
    )
    parser.add_argument(
        "-m",
        "--output_model_dir",
        type=str,
        default="models",
        help="save directory for model",
    )
    subparsers = parser.add_subparsers(
        help="sub-command help", dest="command", required=True
    )

    parser_predict = subparsers.add_parser("predict", help="diacritize a text files ")
    parser_predict.add_argument("input_path", help="input file or folder")
    parser_predict.add_argument("output_path", help="output file")
    parser_predict.add_argument(
        "-ptmp",
        "--pretrain_model_path",
        type=str,
        default=os.path.join(Path(__file__).parent, "models", "Dnikud_best_model.pth"),
        help="pre-train model path - use only if you want to use trained model weights",
    )
    parser_predict.add_argument(
        "-c",
        "--compare",
        dest="compare_nakdimon",
        default=False,
        help="predict text for comparing with Nakdimon",
    )
    parser_predict.set_defaults(func=do_predict)

    parser_evaluate = subparsers.add_parser("evaluate", help="evaluate D-nikud")
    parser_evaluate.add_argument("input_path", help="input file or folder")
    parser_evaluate.add_argument(
        "-ptmp",
        "--pretrain_model_path",
        type=str,
        default=os.path.join(Path(__file__).parent, "models", "Dnikud_best_model.pth"),
        help="pre-train model path - use only if you want to use trained model weights",
    )
    parser_evaluate.add_argument(
        "-df",
        "--plots_folder",
        dest="plots_folder",
        default=os.path.join(Path(__file__).parent, "plots"),
        help="set the debug folder",
    )
    parser_evaluate.add_argument(
        "-es",
        "--eval_sub_folders",
        dest="eval_sub_folders",
        default=False,
        help="accuracy calculation includes the evaluation of sub-folders "
        "within the input_path folder, providing independent assessments "
        "for each subfolder.",
    )
    parser_evaluate.set_defaults(func=do_evaluate)

    # train --n_epochs 20

    parser_train = subparsers.add_parser("train", help="train D-nikud")
    parser_train.add_argument(
        "-ptmp",
        "--pretrain_model_path",
        type=str,
        default=None,
        help="pre-train model path - use only if you want to use trained model weights",
    )
    parser_train.add_argument(
        "--learning_rate", type=float, default=0.001, help="Learning rate"
    )
    parser_train.add_argument("--batch_size", type=int, default=32, help="batch_size")
    parser_train.add_argument(
        "--n_epochs", type=int, default=10, help="number of epochs"
    )
    parser_train.add_argument(
        "--data_folder",
        dest="data_folder",
        default=os.path.join(Path(__file__).parent, "data"),
        help="Set the debug folder",
    )
    parser_train.add_argument(
        "--checkpoints_frequency",
        type=int,
        default=1,
        help="checkpoints frequency for save the model",
    )
    parser_train.add_argument(
        "-df",
        "--plots_folder",
        dest="plots_folder",
        default=os.path.join(Path(__file__).parent, "plots"),
        help="Set the debug folder",
    )
    parser_train.set_defaults(func=do_train)

    args = parser.parse_args()
    kwargs = vars(args).copy()
    date_time = datetime.now().strftime("%d_%m_%y__%H_%M")
    logger = get_logger(kwargs["log_level"], args.command, date_time)

    del kwargs["log_level"]

    kwargs["tokenizer_tavbert"] = tokenizer_tavbert
    kwargs["logger"] = logger

    msg = "Loading model..."
    logger.debug(msg)

    if args.command in ["evaluate", "predict"] or (
        args.command == "train" and args.pretrain_model_path is not None
    ):
        dir_model_config = os.path.join("models", "config.yml")
        config = ModelConfig.load_from_file(dir_model_config)

        dnikud_model = DNikudModel(
            config,
            len(Nikud.label_2_id["nikud"]),
            len(Nikud.label_2_id["dagesh"]),
            len(Nikud.label_2_id["sin"]),
            device=DEVICE,
        ).to(DEVICE)
        state_dict_model = dnikud_model.state_dict()
        state_dict_model.update(torch.load(args.pretrain_model_path))
        dnikud_model.load_state_dict(state_dict_model)
    else:
        base_model_name = "tau/tavbert-he"
        config = AutoConfig.from_pretrained(base_model_name)
        dnikud_model = DNikudModel(
            config,
            len(Nikud.label_2_id["nikud"]),
            len(Nikud.label_2_id["dagesh"]),
            len(Nikud.label_2_id["sin"]),
            pretrain_model=base_model_name,
            device=DEVICE,
        ).to(DEVICE)

    if args.command == "train":
        output_trained_model_dir = os.path.join(
            kwargs["output_model_dir"], "latest", f"output_models_{date_time}"
        )
        create_missing_folders(output_trained_model_dir)
        dir_model_config = os.path.join(kwargs["output_model_dir"], "config.yml")
        kwargs["dir_model_config"] = dir_model_config
        kwargs["output_trained_model_dir"] = output_trained_model_dir
    del kwargs["pretrain_model_path"]
    del kwargs["output_model_dir"]
    kwargs["dnikud_model"] = dnikud_model

    del kwargs["command"]
    del kwargs["func"]
    args.func(**kwargs)

    sys.exit(0)