paolinox commited on
Commit
0972a8a
·
1 Parent(s): ba7b437

paolinox/mobilenet-FT-food101

Browse files
Files changed (5) hide show
  1. README.md +107 -0
  2. config.json +43 -0
  3. model.safetensors +3 -0
  4. preprocessor_config.json +27 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: google/mobilenet_v2_1.0_224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - food101
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: mobilenet-finetuned-food101
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: food101
18
+ type: food101
19
+ config: default
20
+ split: train[:5000]
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.821
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # mobilenet-finetuned-food101
32
+
33
+ This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the food101 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5518
36
+ - Accuracy: 0.821
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 128
57
+ - eval_batch_size: 128
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 512
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 30
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 1.0 | 6 | 1.9575 | 0.153 |
71
+ | 1.9536 | 2.0 | 12 | 1.8509 | 0.265 |
72
+ | 1.9536 | 3.0 | 18 | 1.7003 | 0.451 |
73
+ | 1.7915 | 4.0 | 24 | 1.5181 | 0.578 |
74
+ | 1.4994 | 5.0 | 30 | 1.3609 | 0.631 |
75
+ | 1.4994 | 6.0 | 36 | 1.2321 | 0.669 |
76
+ | 1.2203 | 7.0 | 42 | 1.0696 | 0.69 |
77
+ | 1.2203 | 8.0 | 48 | 0.9676 | 0.723 |
78
+ | 1.0215 | 9.0 | 54 | 0.8888 | 0.729 |
79
+ | 0.8462 | 10.0 | 60 | 0.8380 | 0.74 |
80
+ | 0.8462 | 11.0 | 66 | 0.7461 | 0.778 |
81
+ | 0.744 | 12.0 | 72 | 0.6724 | 0.792 |
82
+ | 0.744 | 13.0 | 78 | 0.7314 | 0.769 |
83
+ | 0.6496 | 14.0 | 84 | 0.6831 | 0.77 |
84
+ | 0.6143 | 15.0 | 90 | 0.5937 | 0.81 |
85
+ | 0.6143 | 16.0 | 96 | 0.6217 | 0.793 |
86
+ | 0.5468 | 17.0 | 102 | 0.5965 | 0.788 |
87
+ | 0.5468 | 18.0 | 108 | 0.5944 | 0.813 |
88
+ | 0.5428 | 19.0 | 114 | 0.5869 | 0.812 |
89
+ | 0.5193 | 20.0 | 120 | 0.5565 | 0.82 |
90
+ | 0.5193 | 21.0 | 126 | 0.6155 | 0.803 |
91
+ | 0.4902 | 22.0 | 132 | 0.5685 | 0.817 |
92
+ | 0.4902 | 23.0 | 138 | 0.6097 | 0.789 |
93
+ | 0.4869 | 24.0 | 144 | 0.6002 | 0.8 |
94
+ | 0.4745 | 25.0 | 150 | 0.5569 | 0.814 |
95
+ | 0.4745 | 26.0 | 156 | 0.5414 | 0.821 |
96
+ | 0.4653 | 27.0 | 162 | 0.5806 | 0.807 |
97
+ | 0.4653 | 28.0 | 168 | 0.5663 | 0.807 |
98
+ | 0.4543 | 29.0 | 174 | 0.5412 | 0.825 |
99
+ | 0.4575 | 30.0 | 180 | 0.5518 | 0.821 |
100
+
101
+
102
+ ### Framework versions
103
+
104
+ - Transformers 4.35.2
105
+ - Pytorch 2.1.0+cu118
106
+ - Datasets 2.15.0
107
+ - Tokenizers 0.15.0
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/mobilenet_v2_1.0_224",
3
+ "architectures": [
4
+ "MobileNetV2ForImageClassification"
5
+ ],
6
+ "classifier_dropout_prob": 0.2,
7
+ "depth_divisible_by": 8,
8
+ "depth_multiplier": 1.0,
9
+ "expand_ratio": 6,
10
+ "finegrained_output": true,
11
+ "first_layer_is_expansion": true,
12
+ "hidden_act": "relu6",
13
+ "id2label": {
14
+ "0": "beignets",
15
+ "1": "bruschetta",
16
+ "2": "chicken_wings",
17
+ "3": "hamburger",
18
+ "4": "pork_chop",
19
+ "5": "prime_rib",
20
+ "6": "ramen"
21
+ },
22
+ "image_size": 224,
23
+ "initializer_range": 0.02,
24
+ "label2id": {
25
+ "beignets": 0,
26
+ "bruschetta": 1,
27
+ "chicken_wings": 2,
28
+ "hamburger": 3,
29
+ "pork_chop": 4,
30
+ "prime_rib": 5,
31
+ "ramen": 6
32
+ },
33
+ "layer_norm_eps": 0.001,
34
+ "min_depth": 8,
35
+ "model_type": "mobilenet_v2",
36
+ "num_channels": 3,
37
+ "output_stride": 32,
38
+ "problem_type": "single_label_classification",
39
+ "semantic_loss_ignore_index": 255,
40
+ "tf_padding": true,
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.35.2"
43
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce7b82d2fd228b55d70a63370bb3468087cfdfee4d5ea0e06344e6a1c605bdb4
3
+ size 9105836
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_normalize": true,
8
+ "do_rescale": true,
9
+ "do_resize": true,
10
+ "image_mean": [
11
+ 0.5,
12
+ 0.5,
13
+ 0.5
14
+ ],
15
+ "image_processor_type": "MobileNetV2ImageProcessor",
16
+ "image_std": [
17
+ 0.5,
18
+ 0.5,
19
+ 0.5
20
+ ],
21
+ "resample": 2,
22
+ "rescale_factor": 0.00392156862745098,
23
+ "size": {
24
+ "shortest_edge": 256
25
+ },
26
+ "use_square_size": false
27
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4203d7b2f4ed0167633d8dfdc236108a64820595d999f93debac4848b22adb03
3
+ size 4600