Papers
arxiv:1903.05566

Benchmarking Natural Language Understanding Services for building Conversational Agents

Published on Mar 13, 2019
Authors:
,
,
,

Abstract

We have recently seen the emergence of several publicly available Natural Language Understanding (NLU) toolkits, which map user utterances to structured, but more abstract, Dialogue Act (DA) or Intent specifications, while making this process accessible to the lay developer. In this paper, we present the first wide coverage evaluation and comparison of some of the most popular NLU services, on a large, multi-domain (21 domains) dataset of 25K user utterances that we have collected and annotated with Intent and Entity Type specifications and which will be released as part of this submission. The results show that on Intent classification Watson significantly outperforms the other platforms, namely, Dialogflow, LUIS and Rasa; though these also perform well. Interestingly, on Entity Type recognition, Watson performs significantly worse due to its low Precision. Again, Dialogflow, LUIS and Rasa perform well on this task.

Community

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 5

Browse 5 datasets citing this paper

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1903.05566 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.