Papers
arxiv:1912.06290

Meta-Learning Initializations for Image Segmentation

Published on Dec 13, 2019
Authors:
,
,

Abstract

We extend first-order model agnostic meta-learning algorithms (including FOMAML and Reptile) to image segmentation, present a novel neural network architecture built for fast learning which we call EfficientLab, and leverage a formal definition of the test error of meta-learning algorithms to decrease error on out of distribution tasks. We show state of the art results on the FSS-1000 dataset by meta-training EfficientLab with FOMAML and using Bayesian optimization to infer the optimal test-time adaptation routine hyperparameters. We also construct a small benchmark dataset, FP-k, for the empirical study of how meta-learning systems perform in both few- and many-shot settings. On the FP-k dataset, we show that meta-learned initializations provide value for canonical few-shot image segmentation but their performance is quickly matched by conventional transfer learning with performance being equal beyond 10 labeled examples. Our code, meta-learned model, and the FP-k dataset are available at https://github.com/ml4ai/mliis .

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1912.06290 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1912.06290 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1912.06290 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.