Papers
arxiv:2005.08100

Conformer: Convolution-augmented Transformer for Speech Recognition

Published on May 16, 2020
Authors:
,
,
,
,
,
,
,
,
,
,

Abstract

Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters.

Community

Sign up or log in to comment

Models citing this paper 35

Browse 35 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2005.08100 in a dataset README.md to link it from this page.

Spaces citing this paper 76

Collections including this paper 1