Papers
arxiv:2106.08265

Towards Total Recall in Industrial Anomaly Detection

Published on Jun 15, 2021
Authors:
,
,
,
,
,

Abstract

Being able to spot defective parts is a critical component in large-scale industrial manufacturing. A particular challenge that we address in this work is the cold-start problem: fit a model using nominal (non-defective) example images only. While handcrafted solutions per class are possible, the goal is to build systems that work well simultaneously on many different tasks automatically. The best performing approaches combine embeddings from ImageNet models with an outlier detection model. In this paper, we extend on this line of work and propose PatchCore, which uses a maximally representative memory bank of nominal patch-features. PatchCore offers competitive inference times while achieving state-of-the-art performance for both detection and localization. On the challenging, widely used MVTec AD benchmark PatchCore achieves an image-level anomaly detection AUROC score of up to 99.6%, more than halving the error compared to the next best competitor. We further report competitive results on two additional datasets and also find competitive results in the few samples regime.^* Work done during a research internship at Amazon AWS. Code: github.com/amazon-research/patchcore-inspection.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2106.08265 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2106.08265 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.