Papers
arxiv:2212.10750

PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition

Published on Dec 21, 2022
Authors:
,
,
,
,

Abstract

The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2212.10750 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2212.10750 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.