Pre-training Language Models for Comparative Reasoning
Abstract
Comparative reasoning is a process of comparing objects, concepts, or entities to draw conclusions, which constitutes a fundamental cognitive ability. In this paper, we propose a novel framework to pre-train language models for enhancing their abilities of comparative reasoning over texts. While there have been approaches for NLP tasks that require comparative reasoning, they suffer from costly manual data labeling and limited generalizability to different tasks. Our approach introduces a novel method of collecting scalable data for text-based entity comparison, which leverages both structured and un<PRE_TAG>structured data</POST_TAG>. Moreover, we present a framework of pre-training language models via three novel objectives on comparative reasoning. Evaluation on downstream tasks including comparative question answering, question generation, and summarization shows that our <PRE_TAG>pre-training framework</POST_TAG> significantly improves the comparative reasoning abilities of language models, especially under low-resource conditions. This work also releases the first integrated benchmark for comparative reasoning.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper