Papers
arxiv:2411.16495

AtomR: Atomic Operator-Empowered Large Language Models for Heterogeneous Knowledge Reasoning

Published on Nov 25, 2024
Authors:
,
,
,
,
,
,

Abstract

Recent advancements in large language models (LLMs) have led to significant improvements in various natural language processing tasks, but it is still challenging for LLMs to perform knowledge-intensive complex question answering due to LLMs' inefficacy in reasoning planning and the hallucination problem. A typical solution is to employ retrieval-augmented generation (RAG) coupled with chain-of-thought (CoT) reasoning, which decomposes complex questions into chain-like sub-questions and applies iterative RAG at each sub-question. However, prior works exhibit sub-optimal reasoning planning and overlook dynamic knowledge retrieval from heterogeneous sources. In this paper, we propose AtomR, a novel heterogeneous knowledge reasoning framework that conducts multi-source reasoning at the atomic level. Drawing inspiration from the graph modeling of knowledge, AtomR leverages large language models (LLMs) to decompose complex questions into combinations of three atomic knowledge operators, significantly enhancing the reasoning process at both the planning and execution stages. We also introduce BlendQA, a novel evaluation benchmark tailored to assess complex heterogeneous knowledge reasoning. Experiments show that AtomR significantly outperforms state-of-the-art baselines across three single-source and two multi-source reasoning benchmarks, with notable performance gains of 9.4% on 2WikiMultihop and 9.5% on BlendQA.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2411.16495 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2411.16495 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.