new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation

Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos based on real-world driving data. Notably, we explicitly leverage structured conditions to control the spatial-temporal consistency of foreground and background elements, thus the generated data adheres closely to traffic constraints. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 24.5%, 39.0%, and 10.5% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 20.3%, 42.0%, and 13.7% in the NTA-IoU metric.

DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving

World models, especially in autonomous driving, are trending and drawing extensive attention due to their capacity for comprehending driving environments. The established world model holds immense potential for the generation of high-quality driving videos, and driving policies for safe maneuvering. However, a critical limitation in relevant research lies in its predominant focus on gaming environments or simulated settings, thereby lacking the representation of real-world driving scenarios. Therefore, we introduce DriveDreamer, a pioneering world model entirely derived from real-world driving scenarios. Regarding that modeling the world in intricate driving scenes entails an overwhelming search space, we propose harnessing the powerful diffusion model to construct a comprehensive representation of the complex environment. Furthermore, we introduce a two-stage training pipeline. In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states. The proposed DriveDreamer is the first world model established from real-world driving scenarios. We instantiate DriveDreamer on the challenging nuScenes benchmark, and extensive experiments verify that DriveDreamer empowers precise, controllable video generation that faithfully captures the structural constraints of real-world traffic scenarios. Additionally, DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.

DriveAdapter: Breaking the Coupling Barrier of Perception and Planning in End-to-End Autonomous Driving

End-to-end autonomous driving aims to build a fully differentiable system that takes raw sensor data as inputs and directly outputs the planned trajectory or control signals of the ego vehicle. State-of-the-art methods usually follow the `Teacher-Student' paradigm. The Teacher model uses privileged information (ground-truth states of surrounding agents and map elements) to learn the driving strategy. The student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model. By eliminating the noise of the perception part during planning learning, state-of-the-art works could achieve better performance with significantly less data compared to those coupled ones. However, under the current Teacher-Student paradigm, the student model still needs to learn a planning head from scratch, which could be challenging due to the redundant and noisy nature of raw sensor inputs and the casual confusion issue of behavior cloning. In this work, we aim to explore the possibility of directly adopting the strong teacher model to conduct planning while letting the student model focus more on the perception part. We find that even equipped with a SOTA perception model, directly letting the student model learn the required inputs of the teacher model leads to poor driving performance, which comes from the large distribution gap between predicted privileged inputs and the ground-truth. To this end, we propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules. Additionally, since the pure learning-based teacher model itself is imperfect and occasionally breaks safety rules, we propose a method of action-guided feature learning with a mask for those imperfect teacher features to further inject the priors of hand-crafted rules into the learning process.

AlphaDrive: Unleashing the Power of VLMs in Autonomous Driving via Reinforcement Learning and Reasoning

OpenAI o1 and DeepSeek R1 achieve or even surpass human expert-level performance in complex domains like mathematics and science, with reinforcement learning (RL) and reasoning playing a crucial role. In autonomous driving, recent end-to-end models have greatly improved planning performance but still struggle with long-tailed problems due to limited common sense and reasoning abilities. Some studies integrate vision-language models (VLMs) into autonomous driving, but they typically rely on pre-trained models with simple supervised fine-tuning (SFT) on driving data, without further exploration of training strategies or optimizations specifically tailored for planning. In this paper, we propose AlphaDrive, a RL and reasoning framework for VLMs in autonomous driving. AlphaDrive introduces four GRPO-based RL rewards tailored for planning and employs a two-stage planning reasoning training strategy that combines SFT with RL. As a result, AlphaDrive significantly improves both planning performance and training efficiency compared to using only SFT or without reasoning. Moreover, we are also excited to discover that, following RL training, AlphaDrive exhibits some emergent multimodal planning capabilities, which is critical for improving driving safety and efficiency. To the best of our knowledge, AlphaDrive is the first to integrate GRPO-based RL with planning reasoning into autonomous driving. Code will be released to facilitate future research.

End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent

Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

In the past decade, autonomous driving has experienced rapid development in both academia and industry. However, its limited interpretability remains a significant unsolved problem, severely hindering autonomous vehicle commercialization and further development. Previous approaches utilizing small language models have failed to address this issue due to their lack of flexibility, generalization ability, and robustness. Recently, multimodal large language models (LLMs) have gained considerable attention from the research community for their capability to process and reason non-text data (e.g., images and videos) by text. In this paper, we present DriveGPT4, an interpretable end-to-end autonomous driving system utilizing LLMs. DriveGPT4 is capable of interpreting vehicle actions and providing corresponding reasoning, as well as answering diverse questions posed by human users for enhanced interaction. Additionally, DriveGPT4 predicts vehicle low-level control signals in an end-to-end fashion. These capabilities stem from a customized visual instruction tuning dataset specifically designed for autonomous driving. To the best of our knowledge, DriveGPT4 is the first work focusing on interpretable end-to-end autonomous driving. When evaluated on multiple tasks alongside conventional methods and video understanding LLMs, DriveGPT4 demonstrates superior qualitative and quantitative performance. Additionally, DriveGPT4 can be generalized in a zero-shot fashion to accommodate more unseen scenarios. The project page is available at https://tonyxuqaq.github.io/projects/DriveGPT4/ .

A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle Trajectory and Driving Intention Prediction

Accurate Vehicle Trajectory Prediction is critical for automated vehicles and advanced driver assistance systems. Vehicle trajectory prediction consists of two essential tasks, i.e., longitudinal position prediction and lateral position prediction. There is a significant correlation between driving intentions and vehicle motion. In existing work, the three tasks are often conducted separately without considering the relationships between the longitudinal position, lateral position, and driving intention. In this paper, we propose a novel Temporal Multi-Gate Mixture-of-Experts (TMMOE) model for simultaneously predicting the vehicle trajectory and driving intention. The proposed model consists of three layers: a shared layer, an expert layer, and a fully connected layer. In the model, the shared layer utilizes Temporal Convolutional Networks (TCN) to extract temporal features. Then the expert layer is built to identify different information according to the three tasks. Moreover, the fully connected layer is used to integrate and export prediction results. To achieve better performance, uncertainty algorithm is used to construct the multi-task loss function. Finally, the publicly available CitySim dataset validates the TMMOE model, demonstrating superior performance compared to the LSTM model, achieving the highest classification and regression results. Keywords: Vehicle trajectory prediction, driving intentions Classification, Multi-task

Making Large Language Models Better Planners with Reasoning-Decision Alignment

Data-driven approaches for autonomous driving (AD) have been widely adopted in the past decade but are confronted with dataset bias and uninterpretability. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Thought (CoT) reasoning process can enhance explainability and scene understanding. However, such a popular strategy proves to suffer from the notorious problems of misalignment between the crafted CoTs against the consequent decision-making, which remains untouched by previous LLM-based AD methods. To address this problem, we motivate an end-to-end decision-making model based on multimodality-augmented LLM, which simultaneously executes CoT reasoning and carries out planning results. Furthermore, we propose a reasoning-decision alignment constraint between the paired CoTs and planning results, imposing the correspondence between reasoning and decision-making. Moreover, we redesign the CoTs to enable the model to comprehend complex scenarios and enhance decision-making performance. We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate the effectiveness of our RDA-Driver in enhancing the performance of end-to-end AD systems. Specifically, our RDA-Driver achieves state-of-the-art planning performance on the nuScenes dataset with 0.80 L2 error and 0.32 collision rate, and also achieves leading results on challenging DriveLM-nuScenes benchmarks with 0.82 L2 error and 0.38 collision rate.

DrivingWorld: Constructing World Model for Autonomous Driving via Video GPT

Recent successes in autoregressive (AR) generation models, such as the GPT series in natural language processing, have motivated efforts to replicate this success in visual tasks. Some works attempt to extend this approach to autonomous driving by building video-based world models capable of generating realistic future video sequences and predicting ego states. However, prior works tend to produce unsatisfactory results, as the classic GPT framework is designed to handle 1D contextual information, such as text, and lacks the inherent ability to model the spatial and temporal dynamics essential for video generation. In this paper, we present DrivingWorld, a GPT-style world model for autonomous driving, featuring several spatial-temporal fusion mechanisms. This design enables effective modeling of both spatial and temporal dynamics, facilitating high-fidelity, long-duration video generation. Specifically, we propose a next-state prediction strategy to model temporal coherence between consecutive frames and apply a next-token prediction strategy to capture spatial information within each frame. To further enhance generalization ability, we propose a novel masking strategy and reweighting strategy for token prediction to mitigate long-term drifting issues and enable precise control. Our work demonstrates the ability to produce high-fidelity and consistent video clips of over 40 seconds in duration, which is over 2 times longer than state-of-the-art driving world models. Experiments show that, in contrast to prior works, our method achieves superior visual quality and significantly more accurate controllable future video generation. Our code is available at https://github.com/YvanYin/DrivingWorld.

Situation Awareness for Driver-Centric Driving Style Adaptation

There is evidence that the driving style of an autonomous vehicle is important to increase the acceptance and trust of the passengers. The driving situation has been found to have a significant influence on human driving behavior. However, current driving style models only partially incorporate driving environment information, limiting the alignment between an agent and the given situation. Therefore, we propose a situation-aware driving style model based on different visual feature encoders pretrained on fleet data, as well as driving behavior predictors, which are adapted to the driving style of a specific driver. Our experiments show that the proposed method outperforms static driving styles significantly and forms plausible situation clusters. Furthermore, we found that feature encoders pretrained on our dataset lead to more precise driving behavior modeling. In contrast, feature encoders pretrained supervised and unsupervised on different data sources lead to more specific situation clusters, which can be utilized to constrain and control the driving style adaptation for specific situations. Moreover, in a real-world setting, where driving style adaptation is happening iteratively, we found the MLP-based behavior predictors achieve good performance initially but suffer from catastrophic forgetting. In contrast, behavior predictors based on situationdependent statistics can learn iteratively from continuous data streams by design. Overall, our experiments show that important information for driving behavior prediction is contained within the visual feature encoder. The dataset is publicly available at huggingface.co/datasets/jHaselberger/SADC-Situation-Awareness-for-Driver-Centric-Driving-Style-Adaptation.

Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives

Recent advancements in Vision-Language Models (VLMs) have sparked interest in their use for autonomous driving, particularly in generating interpretable driving decisions through natural language. However, the assumption that VLMs inherently provide visually grounded, reliable, and interpretable explanations for driving remains largely unexamined. To address this gap, we introduce DriveBench, a benchmark dataset designed to evaluate VLM reliability across 17 settings (clean, corrupted, and text-only inputs), encompassing 19,200 frames, 20,498 question-answer pairs, three question types, four mainstream driving tasks, and a total of 12 popular VLMs. Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding, especially under degraded or missing visual inputs. This behavior, concealed by dataset imbalances and insufficient evaluation metrics, poses significant risks in safety-critical scenarios like autonomous driving. We further observe that VLMs struggle with multi-modal reasoning and display heightened sensitivity to input corruptions, leading to inconsistencies in performance. To address these challenges, we propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding. Additionally, we highlight the potential of leveraging VLMs' awareness of corruptions to enhance their reliability, offering a roadmap for developing more trustworthy and interpretable decision-making systems in real-world autonomous driving contexts. The benchmark toolkit is publicly accessible.