6 Improving Classification Performance With Human Feedback: Label a few, we label the rest In the realm of artificial intelligence, where a vast majority of data is unstructured, obtaining substantial amounts of labeled data to train supervised machine learning models poses a significant challenge. To address this, we delve into few-shot and active learning, where are goal is to improve AI models with human feedback on a few labeled examples. This paper focuses on understanding how a continuous feedback loop can refine models, thereby enhancing their accuracy, recall, and precision through incremental human input. By employing Large Language Models (LLMs) such as GPT-3.5, BERT, and SetFit, we aim to analyze the efficacy of using a limited number of labeled examples to substantially improve model accuracy. We benchmark this approach on the Financial Phrasebank, Banking, Craigslist, Trec, Amazon Reviews datasets to prove that with just a few labeled examples, we are able to surpass the accuracy of zero shot large language models to provide enhanced text classification performance. We demonstrate that rather than needing to manually label millions of rows of data, we just need to label a few and the model can effectively predict the rest. 5 authors · Jan 17, 2024 2
- Revolutionizing Finance with LLMs: An Overview of Applications and Insights In recent years, Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields. Built on the Transformer architecture, these models are trained on extensive datasets, enabling them to understand and generate human language effectively. In the financial domain, the deployment of LLMs is gaining momentum. These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice. Leveraging their natural language processing capabilities, LLMs can distill key insights from vast financial data, aiding institutions in making informed investment choices and enhancing both operational efficiency and customer satisfaction. In this study, we provide a comprehensive overview of the emerging integration of LLMs into various financial tasks. Additionally, we conducted holistic tests on multiple financial tasks through the combination of natural language instructions. Our findings show that GPT-4 effectively follow prompt instructions across various financial tasks. This survey and evaluation of LLMs in the financial domain aim to deepen the understanding of LLMs' current role in finance for both financial practitioners and LLM researchers, identify new research and application prospects, and highlight how these technologies can be leveraged to solve practical challenges in the finance industry. 12 authors · Jan 21, 2024
1 Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts The use of robo-readers to analyze news texts is an emerging technology trend in computational finance. In recent research, a substantial effort has been invested to develop sophisticated financial polarity-lexicons that can be used to investigate how financial sentiments relate to future company performance. However, based on experience from other fields, where sentiment analysis is commonly applied, it is well-known that the overall semantic orientation of a sentence may differ from the prior polarity of individual words. The objective of this article is to investigate how semantic orientations can be better detected in financial and economic news by accommodating the overall phrase-structure information and domain-specific use of language. Our three main contributions are: (1) establishment of a human-annotated finance phrase-bank, which can be used as benchmark for training and evaluating alternative models; (2) presentation of a technique to enhance financial lexicons with attributes that help to identify expected direction of events that affect overall sentiment; (3) development of a linearized phrase-structure model for detecting contextual semantic orientations in financial and economic news texts. The relevance of the newly added lexicon features and the benefit of using the proposed learning-algorithm are demonstrated in a comparative study against previously used general sentiment models as well as the popular word frequency models used in recent financial studies. The proposed framework is parsimonious and avoids the explosion in feature-space caused by the use of conventional n-gram features. 5 authors · Jul 19, 2013
- NLP in FinTech Applications: Past, Present and Future Financial Technology (FinTech) is one of the worldwide rapidly-rising topics in the past five years according to the statistics of FinTech from Google Trends. In this position paper, we focus on the researches applying natural language processing (NLP) technologies in the finance domain. Our goal is to indicate the position we are now and provide the blueprint for future researches. We go through the application scenarios from three aspects including Know Your Customer (KYC), Know Your Product (KYP), and Satisfy Your Customer (SYC). Both formal documents and informal textual data are analyzed to understand corporate customers and personal customers. Furthermore, we talk over how to dynamically update the features of products from the prospect and the risk points of view. Finally, we discuss satisfying the customers in both B2C and C2C business models. After summarizing the past and the recent challenges, we highlight several promising future research directions in the trend of FinTech and the open finance tendency. 3 authors · May 4, 2020
- WHEN FLUE MEETS FLANG: Benchmarks and Large Pre-trained Language Model for Financial Domain Pre-trained language models have shown impressive performance on a variety of tasks and domains. Previous research on financial language models usually employs a generic training scheme to train standard model architectures, without completely leveraging the richness of the financial data. We propose a novel domain specific Financial LANGuage model (FLANG) which uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective. Additionally, the evaluation benchmarks in the field have been limited. To this end, we contribute the Financial Language Understanding Evaluation (FLUE), an open-source comprehensive suite of benchmarks for the financial domain. These include new benchmarks across 5 NLP tasks in financial domain as well as common benchmarks used in the previous research. Experiments on these benchmarks suggest that our model outperforms those in prior literature on a variety of NLP tasks. Our models, code and benchmark data are publicly available on Github and Huggingface. 10 authors · Oct 31, 2022
- BBT-Fin: Comprehensive Construction of Chinese Financial Domain Pre-trained Language Model, Corpus and Benchmark To advance Chinese financial natural language processing (NLP), we introduce BBT-FinT5, a new Chinese financial pre-training language model based on the T5 model. To support this effort, we have built BBT-FinCorpus, a large-scale financial corpus with approximately 300GB of raw text from four different sources. In general domain NLP, comprehensive benchmarks like GLUE and SuperGLUE have driven significant advancements in language model pre-training by enabling head-to-head comparisons among models. Drawing inspiration from these benchmarks, we propose BBT-CFLEB, a Chinese Financial Language understanding and generation Evaluation Benchmark, which includes six datasets covering both understanding and generation tasks. Our aim is to facilitate research in the development of NLP within the Chinese financial domain. Our model, corpus and benchmark are released at https://github.com/ssymmetry/BBT-FinCUGE-Applications. Our work belongs to the Big Bang Transformer (BBT), a large-scale pre-trained language model project. 9 authors · Feb 18, 2023
3 FinMTEB: Finance Massive Text Embedding Benchmark Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advances in large language models (LLMs) have further enhanced the performance of embedding models. While these models are often benchmarked on general-purpose datasets, real-world applications demand domain-specific evaluation. In this work, we introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a specialized counterpart to MTEB designed for the financial domain. FinMTEB comprises 64 financial domain-specific embedding datasets across 7 tasks that cover diverse textual types in both Chinese and English, such as financial news articles, corporate annual reports, ESG reports, regulatory filings, and earnings call transcripts. We also develop a finance-adapted model, FinPersona-E5, using a persona-based data synthetic method to cover diverse financial embedding tasks for training. Through extensive evaluation of 15 embedding models, including FinPersona-E5, we show three key findings: (1) performance on general-purpose benchmarks shows limited correlation with financial domain tasks; (2) domain-adapted models consistently outperform their general-purpose counterparts; and (3) surprisingly, a simple Bag-of-Words (BoW) approach outperforms sophisticated dense embeddings in financial Semantic Textual Similarity (STS) tasks, underscoring current limitations in dense embedding techniques. Our work establishes a robust evaluation framework for financial NLP applications and provides crucial insights for developing domain-specific embedding models. 2 authors · Feb 15 2
2 GPT-InvestAR: Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models Annual Reports of publicly listed companies contain vital information about their financial health which can help assess the potential impact on Stock price of the firm. These reports are comprehensive in nature, going up to, and sometimes exceeding, 100 pages. Analysing these reports is cumbersome even for a single firm, let alone the whole universe of firms that exist. Over the years, financial experts have become proficient in extracting valuable information from these documents relatively quickly. However, this requires years of practice and experience. This paper aims to simplify the process of assessing Annual Reports of all the firms by leveraging the capabilities of Large Language Models (LLMs). The insights generated by the LLM are compiled in a Quant styled dataset and augmented by historical stock price data. A Machine Learning model is then trained with LLM outputs as features. The walkforward test results show promising outperformance wrt S&P500 returns. This paper intends to provide a framework for future work in this direction. To facilitate this, the code has been released as open source. 1 authors · Sep 6, 2023
- SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry. However, existing financial LLMs often face challenges such as hallucinations or superficial parameter training, resulting in suboptimal performance, particularly in financial computing and machine reading comprehension (MRC). To address these issues, we propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM. SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations. We then perform the supervised fine-tuning (SFT) to enhance the model's proficiency across various financial domains. Specifically, we gather extensive financial data and create a high-quality instruction dataset composed of news articles, professional papers, and research reports of finance domain. Utilizing both domain-specific and general datasets, we proceed with continuous pre-training on an established open-source base model, resulting in SNFinLLM-base. Following this, we engage in supervised fine-tuning (SFT) to bolster the model's capability across multiple financial tasks. Crucially, we employ a straightforward Direct Preference Optimization (DPO) method to better align the model with human preferences. Extensive experiments conducted on finance benchmarks and our evaluation dataset demonstrate that SNFinLLM markedly outperforms other state-of-the-art financial language models. For more details, check out our demo video here: https://www.youtube.com/watch?v=GYT-65HZwus. 6 authors · Aug 5, 2024
- FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models Financial risk prediction plays a crucial role in the financial sector. Machine learning methods have been widely applied for automatically detecting potential risks and thus saving the cost of labor. However, the development in this field is lagging behind in recent years by the following two facts: 1) the algorithms used are somewhat outdated, especially in the context of the fast advance of generative AI and large language models (LLMs); 2) the lack of a unified and open-sourced financial benchmark has impeded the related research for years. To tackle these issues, we propose FinPT and FinBench: the former is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models, and the latter is a set of high-quality datasets on financial risks such as default, fraud, and churn. In FinPT, we fill the financial tabular data into the pre-defined instruction template, obtain natural-language customer profiles by prompting LLMs, and fine-tune large foundation models with the profile text to make predictions. We demonstrate the effectiveness of the proposed FinPT by experimenting with a range of representative strong baselines on FinBench. The analytical studies further deepen the understanding of LLMs for financial risk prediction. 4 authors · Jul 22, 2023
3 German FinBERT: A German Pre-trained Language Model This study presents German FinBERT, a novel pre-trained German language model tailored for financial textual data. The model is trained through a comprehensive pre-training process, leveraging a substantial corpus comprising financial reports, ad-hoc announcements and news related to German companies. The corpus size is comparable to the data sets commonly used for training standard BERT models. I evaluate the performance of German FinBERT on downstream tasks, specifically sentiment prediction, topic recognition and question answering against generic German language models. My results demonstrate improved performance on finance-specific data, indicating the efficacy of German FinBERT in capturing domain-specific nuances. The presented findings suggest that German FinBERT holds promise as a valuable tool for financial text analysis, potentially benefiting various applications in the financial domain. 1 authors · Nov 15, 2023
- WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc. 13 authors · Aug 10, 2023
- A Survey of Large Language Models in Finance (FinLLMs) Large Language Models (LLMs) have shown remarkable capabilities across a wide variety of Natural Language Processing (NLP) tasks and have attracted attention from multiple domains, including financial services. Despite the extensive research into general-domain LLMs, and their immense potential in finance, Financial LLM (FinLLM) research remains limited. This survey provides a comprehensive overview of FinLLMs, including their history, techniques, performance, and opportunities and challenges. Firstly, we present a chronological overview of general-domain Pre-trained Language Models (PLMs) through to current FinLLMs, including the GPT-series, selected open-source LLMs, and financial LMs. Secondly, we compare five techniques used across financial PLMs and FinLLMs, including training methods, training data, and fine-tuning methods. Thirdly, we summarize the performance evaluations of six benchmark tasks and datasets. In addition, we provide eight advanced financial NLP tasks and datasets for developing more sophisticated FinLLMs. Finally, we discuss the opportunities and the challenges facing FinLLMs, such as hallucination, privacy, and efficiency. To support AI research in finance, we compile a collection of accessible datasets and evaluation benchmarks on GitHub. 4 authors · Feb 3, 2024
- Realised Volatility Forecasting: Machine Learning via Financial Word Embedding This study develops FinText, a financial word embedding compiled from 15 years of business news archives. The results show that FinText produces substantially more accurate results than general word embeddings based on the gold-standard financial benchmark we introduced. In contrast to well-known econometric models, and over the sample period from 27 July 2007 to 27 January 2022 for 23 NASDAQ stocks, using stock-related news, our simple natural language processing model supported by different word embeddings improves realised volatility forecasts on high volatility days. This improvement in realised volatility forecasting performance switches to normal volatility days when general hot news is used. By utilising SHAP, an Explainable AI method, we also identify and classify key phrases in stock-related and general hot news that moved volatility. 3 authors · Aug 1, 2021
- EDGAR-CORPUS: Billions of Tokens Make The World Go Round We release EDGAR-CORPUS, a novel corpus comprising annual reports from all the publicly traded companies in the US spanning a period of more than 25 years. To the best of our knowledge, EDGAR-CORPUS is the largest financial NLP corpus available to date. All the reports are downloaded, split into their corresponding items (sections), and provided in a clean, easy-to-use JSON format. We use EDGAR-CORPUS to train and release EDGAR-W2V, which are WORD2VEC embeddings for the financial domain. We employ these embeddings in a battery of financial NLP tasks and showcase their superiority over generic GloVe embeddings and other existing financial word embeddings. We also open-source EDGAR-CRAWLER, a toolkit that facilitates downloading and extracting future annual reports. 4 authors · Sep 29, 2021
- FinBERT: A Pretrained Language Model for Financial Communications Contextual pretrained language models, such as BERT (Devlin et al., 2019), have made significant breakthrough in various NLP tasks by training on large scale of unlabeled text re-sources.Financial sector also accumulates large amount of financial communication text.However, there is no pretrained finance specific language models available. In this work,we address the need by pretraining a financial domain specific BERT models, FinBERT, using a large scale of financial communication corpora. Experiments on three financial sentiment classification tasks confirm the advantage of FinBERT over generic domain BERT model. The code and pretrained models are available at https://github.com/yya518/FinBERT. We hope this will be useful for practitioners and researchers working on financial NLP tasks. 3 authors · Jun 14, 2020
- Exploring the Impact of Corpus Diversity on Financial Pretrained Language Models Over the past few years, various domain-specific pretrained language models (PLMs) have been proposed and have outperformed general-domain PLMs in specialized areas such as biomedical, scientific, and clinical domains. In addition, financial PLMs have been studied because of the high economic impact of financial data analysis. However, we found that financial PLMs were not pretrained on sufficiently diverse financial data. This lack of diverse training data leads to a subpar generalization performance, resulting in general-purpose PLMs, including BERT, often outperforming financial PLMs on many downstream tasks. To address this issue, we collected a broad range of financial corpus and trained the Financial Language Model (FiLM) on these diverse datasets. Our experimental results confirm that FiLM outperforms not only existing financial PLMs but also general domain PLMs. Furthermore, we provide empirical evidence that this improvement can be achieved even for unseen corpus groups. 5 authors · Oct 20, 2023
- FinGPT: Open-Source Financial Large Language Models Large language models (LLMs) have shown the potential of revolutionizing natural language processing tasks in diverse domains, sparking great interest in finance. Accessing high-quality financial data is the first challenge for financial LLMs (FinLLMs). While proprietary models like BloombergGPT have taken advantage of their unique data accumulation, such privileged access calls for an open-source alternative to democratize Internet-scale financial data. In this paper, we present an open-source large language model, FinGPT, for the finance sector. Unlike proprietary models, FinGPT takes a data-centric approach, providing researchers and practitioners with accessible and transparent resources to develop their FinLLMs. We highlight the importance of an automatic data curation pipeline and the lightweight low-rank adaptation technique in building FinGPT. Furthermore, we showcase several potential applications as stepping stones for users, such as robo-advising, algorithmic trading, and low-code development. Through collaborative efforts within the open-source AI4Finance community, FinGPT aims to stimulate innovation, democratize FinLLMs, and unlock new opportunities in open finance. Two associated code repos are https://github.com/AI4Finance-Foundation/FinGPT and https://github.com/AI4Finance-Foundation/FinNLP 3 authors · Jun 9, 2023
5 Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at https://github.com/IDEA-FinAI/Golden-Touchstone, contributing to the ongoing evolution of FinLLMs and fostering further research in this critical area. 13 authors · Nov 9, 2024 2
1 FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at https://github.com/AI4Finance-Foundation/FinRobot. 11 authors · May 23, 2024
- FinEAS: Financial Embedding Analysis of Sentiment We introduce a new language representation model in finance called Financial Embedding Analysis of Sentiment (FinEAS). In financial markets, news and investor sentiment are significant drivers of security prices. Thus, leveraging the capabilities of modern NLP approaches for financial sentiment analysis is a crucial component in identifying patterns and trends that are useful for market participants and regulators. In recent years, methods that use transfer learning from large Transformer-based language models like BERT, have achieved state-of-the-art results in text classification tasks, including sentiment analysis using labelled datasets. Researchers have quickly adopted these approaches to financial texts, but best practices in this domain are not well-established. In this work, we propose a new model for financial sentiment analysis based on supervised fine-tuned sentence embeddings from a standard BERT model. We demonstrate our approach achieves significant improvements in comparison to vanilla BERT, LSTM, and FinBERT, a financial domain specific BERT. 4 authors · Oct 31, 2021
1 FinBERT: Financial Sentiment Analysis with Pre-trained Language Models Financial sentiment analysis is a challenging task due to the specialized language and lack of labeled data in that domain. General-purpose models are not effective enough because of the specialized language used in a financial context. We hypothesize that pre-trained language models can help with this problem because they require fewer labeled examples and they can be further trained on domain-specific corpora. We introduce FinBERT, a language model based on BERT, to tackle NLP tasks in the financial domain. Our results show improvement in every measured metric on current state-of-the-art results for two financial sentiment analysis datasets. We find that even with a smaller training set and fine-tuning only a part of the model, FinBERT outperforms state-of-the-art machine learning methods. 1 authors · Aug 27, 2019
- NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance Recently, many works have proposed various financial large language models (FinLLMs) by pre-training from scratch or fine-tuning open-sourced LLMs on financial corpora. However, existing FinLLMs exhibit unsatisfactory performance in understanding financial text when numeric variables are involved in questions. In this paper, we propose a novel LLM, called numeric-sensitive large language model (NumLLM), for Chinese finance. We first construct a financial corpus from financial textbooks which is essential for improving numeric capability of LLMs during fine-tuning. After that, we train two individual low-rank adaptation (LoRA) modules by fine-tuning on our constructed financial corpus. One module is for adapting general-purpose LLMs to financial domain, and the other module is for enhancing the ability of NumLLM to understand financial text with numeric variables. Lastly, we merge the two LoRA modules into the foundation model to obtain NumLLM for inference. Experiments on financial question-answering benchmark show that NumLLM can boost the performance of the foundation model and can achieve the best overall performance compared to all baselines, on both numeric and non-numeric questions. 4 authors · May 1, 2024
- FinanceBench: A New Benchmark for Financial Question Answering FinanceBench is a first-of-its-kind test suite for evaluating the performance of LLMs on open book financial question answering (QA). It comprises 10,231 questions about publicly traded companies, with corresponding answers and evidence strings. The questions in FinanceBench are ecologically valid and cover a diverse set of scenarios. They are intended to be clear-cut and straightforward to answer to serve as a minimum performance standard. We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2,400). The cases are available open-source. We show that existing LLMs have clear limitations for financial QA. Notably, GPT-4-Turbo used with a retrieval system incorrectly answered or refused to answer 81% of questions. While augmentation techniques such as using longer context window to feed in relevant evidence improve performance, they are unrealistic for enterprise settings due to increased latency and cannot support larger financial documents. We find that all models examined exhibit weaknesses, such as hallucinations, that limit their suitability for use by enterprises. 6 authors · Nov 20, 2023
- CFBenchmark: Chinese Financial Assistant Benchmark for Large Language Model Large language models (LLMs) have demonstrated great potential in the financial domain. Thus, it becomes important to assess the performance of LLMs in the financial tasks. In this work, we introduce CFBenchmark, to evaluate the performance of LLMs for Chinese financial assistant. The basic version of CFBenchmark is designed to evaluate the basic ability in Chinese financial text processing from three aspects~(i.e. recognition, classification, and generation) including eight tasks, and includes financial texts ranging in length from 50 to over 1,800 characters. We conduct experiments on several LLMs available in the literature with CFBenchmark-Basic, and the experimental results indicate that while some LLMs show outstanding performance in specific tasks, overall, there is still significant room for improvement in basic tasks of financial text processing with existing models. In the future, we plan to explore the advanced version of CFBenchmark, aiming to further explore the extensive capabilities of language models in more profound dimensions as a financial assistant in Chinese. Our codes are released at https://github.com/TongjiFinLab/CFBenchmark. 7 authors · Nov 9, 2023
- 'Finance Wizard' at the FinLLM Challenge Task: Financial Text Summarization This paper presents our participation under the team name `Finance Wizard' in the FinNLP-AgentScen 2024 shared task #2: Financial Text Summarization. It documents our pipeline approach of fine-tuning a foundation model into a task-specific model for Financial Text Summarization. It involves (1) adapting Llama3 8B, a foundation model, to the Finance domain via continued pre-training, (2) multi-task instruction-tuning to further equip the model with more finance-related capabilities, (3) finally fine-tuning the model into a task-specific `expert'. Our model, FinLlama3\_sum, yielded commendable results, securing the third position in its category with a ROUGE-1 score of 0.521. 2 authors · Aug 7, 2024
- MME-Finance: A Multimodal Finance Benchmark for Expert-level Understanding and Reasoning In recent years, multimodal benchmarks for general domains have guided the rapid development of multimodal models on general tasks. However, the financial field has its peculiarities. It features unique graphical images (e.g., candlestick charts, technical indicator charts) and possesses a wealth of specialized financial knowledge (e.g., futures, turnover rate). Therefore, benchmarks from general fields often fail to measure the performance of multimodal models in the financial domain, and thus cannot effectively guide the rapid development of large financial models. To promote the development of large financial multimodal models, we propose MME-Finance, an bilingual open-ended and practical usage-oriented Visual Question Answering (VQA) benchmark. The characteristics of our benchmark are finance and expertise, which include constructing charts that reflect the actual usage needs of users (e.g., computer screenshots and mobile photography), creating questions according to the preferences in financial domain inquiries, and annotating questions by experts with 10+ years of experience in the financial industry. Additionally, we have developed a custom-designed financial evaluation system in which visual information is first introduced in the multi-modal evaluation process. Extensive experimental evaluations of 19 mainstream MLLMs are conducted to test their perception, reasoning, and cognition capabilities. The results indicate that models performing well on general benchmarks cannot do well on MME-Finance; for instance, the top-performing open-source and closed-source models obtain 65.69 (Qwen2VL-72B) and 63.18 (GPT-4o), respectively. Their performance is particularly poor in categories most relevant to finance, such as candlestick charts and technical indicator charts. In addition, we propose a Chinese version, which helps compare performance of MLLMs under a Chinese context. 12 authors · Nov 5, 2024
- DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple Experts Fine-tuning We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM), DISC-FinLLM. Our methodology improves general LLMs by endowing them with multi-turn question answering abilities, domain text processing capabilities, mathematical computation skills, and retrieval-enhanced generation capabilities. We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation). Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios. Further resources can be found at https://github.com/FudanDISC/DISC-FinLLM. 11 authors · Oct 23, 2023
59 UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models This paper introduces the UCFE: User-Centric Financial Expertise benchmark, an innovative framework designed to evaluate the ability of large language models (LLMs) to handle complex real-world financial tasks. UCFE benchmark adopts a hybrid approach that combines human expert evaluations with dynamic, task-specific interactions to simulate the complexities of evolving financial scenarios. Firstly, we conducted a user study involving 804 participants, collecting their feedback on financial tasks. Secondly, based on this feedback, we created our dataset that encompasses a wide range of user intents and interactions. This dataset serves as the foundation for benchmarking 12 LLM services using the LLM-as-Judge methodology. Our results show a significant alignment between benchmark scores and human preferences, with a Pearson correlation coefficient of 0.78, confirming the effectiveness of the UCFE dataset and our evaluation approach. UCFE benchmark not only reveals the potential of LLMs in the financial sector but also provides a robust framework for assessing their performance and user satisfaction.The benchmark dataset and evaluation code are available. 13 authors · Oct 17, 2024 2
- GPT-3 Models are Few-Shot Financial Reasoners Financial analysis is an important tool for evaluating company performance. Practitioners work to answer financial questions to make profitable investment decisions, and use advanced quantitative analyses to do so. As a result, Financial Question Answering (QA) is a question answering task that requires deep reasoning about numbers. Furthermore, it is unknown how well pre-trained language models can reason in the financial domain. The current state-of-the-art requires a retriever to collect relevant facts about the financial question from the text and a generator to produce a valid financial program and a final answer. However, recently large language models like GPT-3 have achieved state-of-the-art performance on wide variety of tasks with just a few shot examples. We run several experiments with GPT-3 and find that a separate retrieval model and logic engine continue to be essential components to achieving SOTA performance in this task, particularly due to the precise nature of financial questions and the complex information stored in financial documents. With this understanding, our refined prompt-engineering approach on GPT-3 achieves near SOTA accuracy without any fine-tuning. 3 authors · Jul 25, 2023
- FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering In this paper, we introduce FAMMA, an open-source benchmark for financial multilingual multimodal question answering (QA). Our benchmark aims to evaluate the abilities of multimodal large language models (MLLMs) in answering questions that require advanced financial knowledge and sophisticated reasoning. It includes 1,758 meticulously collected question-answer pairs from university textbooks and exams, spanning 8 major subfields in finance including corporate finance, asset management, and financial engineering. Some of the QA pairs are written in Chinese or French, while a majority of them are in English. These questions are presented in a mixed format combining text and heterogeneous image types, such as charts, tables, and diagrams. We evaluate a range of state-of-the-art MLLMs on our benchmark, and our analysis shows that FAMMA poses a significant challenge for these models. Even advanced systems like GPT-4o and Claude-35-Sonnet achieve only 42\% accuracy. Additionally, the open-source Qwen2-VL lags notably behind its proprietary counterparts. Lastly, we explore GPT o1-style reasoning chains to enhance the models' reasoning capabilities, which significantly improve error correction. Our FAMMA benchmark will facilitate future research to develop expert systems in financial QA. The leaderboard is available at https://famma-bench.github.io/famma/ . 6 authors · Oct 6, 2024
3 PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance Although large language models (LLMs) has shown great performance on natural language processing (NLP) in the financial domain, there are no publicly available financial tailtored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 136K data samples to support the fine-tuning, and an evaluation benchmark with 5 tasks and 9 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including five financial NLP tasks and one financial prediction task. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI. 7 authors · Jun 8, 2023
- SEntFiN 1.0: Entity-Aware Sentiment Analysis for Financial News Fine-grained financial sentiment analysis on news headlines is a challenging task requiring human-annotated datasets to achieve high performance. Limited studies have tried to address the sentiment extraction task in a setting where multiple entities are present in a news headline. In an effort to further research in this area, we make publicly available SEntFiN 1.0, a human-annotated dataset of 10,753 news headlines with entity-sentiment annotations, of which 2,847 headlines contain multiple entities, often with conflicting sentiments. We augment our dataset with a database of over 1,000 financial entities and their various representations in news media amounting to over 5,000 phrases. We propose a framework that enables the extraction of entity-relevant sentiments using a feature-based approach rather than an expression-based approach. For sentiment extraction, we utilize 12 different learning schemes utilizing lexicon-based and pre-trained sentence representations and five classification approaches. Our experiments indicate that lexicon-based n-gram ensembles are above par with pre-trained word embedding schemes such as GloVe. Overall, RoBERTa and finBERT (domain-specific BERT) achieve the highest average accuracy of 94.29% and F1-score of 93.27%. Further, using over 210,000 entity-sentiment predictions, we validate the economic effect of sentiments on aggregate market movements over a long duration. 4 authors · May 20, 2023
- FiNCAT: Financial Numeral Claim Analysis Tool While making investment decisions by reading financial documents, investors need to differentiate between in-claim and outof-claim numerals. In this paper, we present a tool which does it automatically. It extracts context embeddings of the numerals using one of the transformer based pre-trained language model called BERT. After this, it uses a Logistic Regression based model to detect whether the numerals is in-claim or out-of-claim. We use FinNum-3 (English) dataset to train our model. After conducting rigorous experiments we achieve a Macro F1 score of 0.8223 on the validation set. We have open-sourced this tool and it can be accessed from https://github.com/sohomghosh/FiNCAT_Financial_Numeral_Claim_Analysis_Tool 2 authors · Jan 26, 2022
22 BloombergGPT: A Large Language Model for Finance The use of NLP in the realm of financial technology is broad and complex, with applications ranging from sentiment analysis and named entity recognition to question answering. Large Language Models (LLMs) have been shown to be effective on a variety of tasks; however, no LLM specialized for the financial domain has been reported in literature. In this work, we present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data. We construct a 363 billion token dataset based on Bloomberg's extensive data sources, perhaps the largest domain-specific dataset yet, augmented with 345 billion tokens from general purpose datasets. We validate BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most accurately reflect our intended usage. Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. Additionally, we explain our modeling choices, training process, and evaluation methodology. As a next step, we plan to release training logs (Chronicles) detailing our experience in training BloombergGPT. 9 authors · Mar 30, 2023 5
1 InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community. 3 authors · Sep 14, 2023
- FinanceQA: A Benchmark for Evaluating Financial Analysis Capabilities of Large Language Models FinanceQA is a testing suite that evaluates LLMs' performance on complex numerical financial analysis tasks that mirror real-world investment work. Despite recent advances, current LLMs fail to meet the strict accuracy requirements of financial institutions, with models failing approximately 60% of realistic tasks that mimic on-the-job analyses at hedge funds, private equity firms, investment banks, and other financial institutions. The primary challenges include hand-spreading metrics, adhering to standard accounting and corporate valuation conventions, and performing analysis under incomplete information - particularly in multi-step tasks requiring assumption generation. This performance gap highlights the disconnect between existing LLM capabilities and the demands of professional financial analysis that are inadequately tested by current testing architectures. Results show that higher-quality training data is needed to support such tasks, which we experiment with using OpenAI's fine-tuning API. FinanceQA is publicly released at [this https URL](https://huggingface.co/datasets/AfterQuery/FinanceQA). 3 authors · Jan 29
- Do We Need Domain-Specific Embedding Models? An Empirical Investigation Embedding models play a crucial role in representing and retrieving information across various NLP applications. Recent advancements in Large Language Models (LLMs) have further enhanced the performance of embedding models, which are trained on massive amounts of text covering almost every domain. These models are often benchmarked on general-purpose datasets like Massive Text Embedding Benchmark (MTEB), where they demonstrate superior performance. However, a critical question arises: Is the development of domain-specific embedding models necessary when general-purpose models are trained on vast corpora that already include specialized domain texts? In this paper, we empirically investigate this question, choosing the finance domain as an example. We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a counterpart to MTEB that consists of financial domain-specific text datasets. We evaluate the performance of seven state-of-the-art embedding models on FinMTEB and observe a significant performance drop compared to their performance on MTEB. To account for the possibility that this drop is driven by FinMTEB's higher complexity, we propose four measures to quantify dataset complexity and control for this factor in our analysis. Our analysis provides compelling evidence that state-of-the-art embedding models struggle to capture domain-specific linguistic and semantic patterns, even when trained on large general-purpose corpora. This study sheds light on the necessity of developing domain-specific embedding models in the LLM era, offering valuable insights for researchers and practitioners. 2 authors · Sep 27, 2024 1
- Multimodal Document Analytics for Banking Process Automation Traditional banks face increasing competition from FinTechs in the rapidly evolving financial ecosystem. Raising operational efficiency is vital to address this challenge. Our study aims to improve the efficiency of document-intensive business processes in banking. To that end, we first review the landscape of business documents in the retail segment. Banking documents often contain text, layout, and visuals, suggesting that document analytics and process automation require more than plain natural language processing (NLP). To verify this and assess the incremental value of visual cues when processing business documents, we compare a recently proposed multimodal model called LayoutXLM to powerful text classifiers (e.g., BERT) and large language models (e.g., GPT) in a case study related to processing company register extracts. The results confirm that incorporating layout information in a model substantially increases its performance. Interestingly, we also observed that more than 75% of the best model performance (in terms of the F1 score) can be achieved with as little as 30% of the training data. This shows that the demand for data labeled data to set up a multi-modal model can be moderate, which simplifies real-world applications of multimodal document analytics. Our study also sheds light on more specific practices in the scope of calibrating a multimodal banking document classifier, including the need for fine-tuning. In sum, the paper contributes original empirical evidence on the effectiveness and efficiency of multi-model models for document processing in the banking business and offers practical guidance on how to unlock this potential in day-to-day operations. 2 authors · Jul 21, 2023
- TWICE: What Advantages Can Low-Resource Domain-Specific Embedding Model Bring? - A Case Study on Korea Financial Texts Domain specificity of embedding models is critical for effective performance. However, existing benchmarks, such as FinMTEB, are primarily designed for high-resource languages, leaving low-resource settings, such as Korean, under-explored. Directly translating established English benchmarks often fails to capture the linguistic and cultural nuances present in low-resource domains. In this paper, titled TWICE: What Advantages Can Low-Resource Domain-Specific Embedding Models Bring? A Case Study on Korea Financial Texts, we introduce KorFinMTEB, a novel benchmark for the Korean financial domain, specifically tailored to reflect its unique cultural characteristics in low-resource languages. Our experimental results reveal that while the models perform robustly on a translated version of FinMTEB, their performance on KorFinMTEB uncovers subtle yet critical discrepancies, especially in tasks requiring deeper semantic understanding, that underscore the limitations of direct translation. This discrepancy highlights the necessity of benchmarks that incorporate language-specific idiosyncrasies and cultural nuances. The insights from our study advocate for the development of domain-specific evaluation frameworks that can more accurately assess and drive the progress of embedding models in low-resource settings. 4 authors · Feb 10
14 Data-Centric Financial Large Language Models Large language models (LLMs) show promise for natural language tasks but struggle when applied directly to complex domains like finance. LLMs have difficulty reasoning about and integrating all relevant information. We propose a data-centric approach to enable LLMs to better handle financial tasks. Our key insight is that rather than overloading the LLM with everything at once, it is more effective to preprocess and pre-understand the data. We create a financial LLM (FLLM) using multitask prompt-based finetuning to achieve data pre-processing and pre-understanding. However, labeled data is scarce for each task. To overcome manual annotation costs, we employ abductive augmentation reasoning (AAR) to automatically generate training data by modifying the pseudo labels from FLLM's own outputs. Experiments show our data-centric FLLM with AAR substantially outperforms baseline financial LLMs designed for raw text, achieving state-of-the-art on financial analysis and interpretation tasks. We also open source a new benchmark for financial analysis and interpretation. Our methodology provides a promising path to unlock LLMs' potential for complex real-world domains. 12 authors · Oct 7, 2023 3
- DOLFIN -- Document-Level Financial test set for Machine Translation Despite the strong research interest in document-level Machine Translation (MT), the test sets dedicated to this task are still scarce. The existing test sets mainly cover topics from the general domain and fall short on specialised domains, such as legal and financial. Also, in spite of their document-level aspect, they still follow a sentence-level logic that does not allow for including certain linguistic phenomena such as information reorganisation. In this work, we aim to fill this gap by proposing a novel test set: DOLFIN. The dataset is built from specialised financial documents, and it makes a step towards true document-level MT by abandoning the paradigm of perfectly aligned sentences, presenting data in units of sections rather than sentences. The test set consists of an average of 1950 aligned sections for five language pairs. We present a detailed data collection pipeline that can serve as inspiration for aligning new document-level datasets. We demonstrate the usefulness and quality of this test set by evaluating a number of models. Our results show that the test set is able to discriminate between context-sensitive and context-agnostic models and shows the weaknesses when models fail to accurately translate financial texts. The test set is made public for the community. 5 authors · Feb 5
- EFSA: Towards Event-Level Financial Sentiment Analysis In this paper, we extend financial sentiment analysis~(FSA) to event-level since events usually serve as the subject of the sentiment in financial text. Though extracting events from the financial text may be conducive to accurate sentiment predictions, it has specialized challenges due to the lengthy and discontinuity of events in a financial text. To this end, we reconceptualize the event extraction as a classification task by designing a categorization comprising coarse-grained and fine-grained event categories. Under this setting, we formulate the Event-Level Financial Sentiment Analysis~(EFSA for short) task that outputs quintuples consisting of (company, industry, coarse-grained event, fine-grained event, sentiment) from financial text. A large-scale Chinese dataset containing 12,160 news articles and 13,725 quintuples is publicized as a brand new testbed for our task. A four-hop Chain-of-Thought LLM-based approach is devised for this task. Systematically investigations are conducted on our dataset, and the empirical results demonstrate the benchmarking scores of existing methods and our proposed method can reach the current state-of-the-art. Our dataset and framework implementation are available at https://anonymous.4open.science/r/EFSA-645E 7 authors · Apr 8, 2024
1 Chinese Fine-Grained Financial Sentiment Analysis with Large Language Models Entity-level fine-grained sentiment analysis in the financial domain is a crucial subtask of sentiment analysis and currently faces numerous challenges. The primary challenge stems from the lack of high-quality and large-scale annotated corpora specifically designed for financial text sentiment analysis, which in turn limits the availability of data necessary for developing effective text processing techniques. Recent advancements in large language models (LLMs) have yielded remarkable performance in natural language processing tasks, primarily centered around language pattern matching. In this paper, we propose a novel and extensive Chinese fine-grained financial sentiment analysis dataset, FinChina SA, for enterprise early warning. We thoroughly evaluate and experiment with well-known existing open-source LLMs using our dataset. We firmly believe that our dataset will serve as a valuable resource to advance the exploration of real-world financial sentiment analysis tasks, which should be the focus of future research. The FinChina SA dataset is publicly available at https://github.com/YerayL/FinChina-SA 5 authors · Jun 24, 2023
1 Multi-Reranker: Maximizing performance of retrieval-augmented generation in the FinanceRAG challenge As Large Language Models (LLMs) increasingly address domain-specific problems, their application in the financial sector has expanded rapidly. Tasks that are both highly valuable and time-consuming, such as analyzing financial statements, disclosures, and related documents, are now being effectively tackled using LLMs. This paper details the development of a high-performance, finance-specific Retrieval-Augmented Generation (RAG) system for the ACM-ICAIF '24 FinanceRAG competition. We optimized performance through ablation studies on query expansion and corpus refinement during the pre-retrieval phase. To enhance retrieval accuracy, we employed multiple reranker models. Notably, we introduced an efficient method for managing long context sizes during the generation phase, significantly improving response quality without sacrificing performance. We ultimately achieve 2nd place in the FinanceRAG Challenge. Our key contributions include: (1) pre-retrieval ablation analysis, (2) an enhanced retrieval algorithm, and (3) a novel approach for long-context management. This work demonstrates the potential of LLMs in effectively processing and analyzing complex financial data to generate accurate and valuable insights. The source code and further details are available at https://github.com/cv-lee/FinanceRAG. 2 authors · Nov 23, 2024
- FinQA: A Dataset of Numerical Reasoning over Financial Data The sheer volume of financial statements makes it difficult for humans to access and analyze a business's financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset -- the first of its kind -- should therefore enable significant, new community research into complex application domains. The dataset and code are publicly availablehttps://github.com/czyssrs/FinQA. 11 authors · Aug 31, 2021
- Fin-Fact: A Benchmark Dataset for Multimodal Financial Fact Checking and Explanation Generation Fact-checking in financial domain is under explored, and there is a shortage of quality dataset in this domain. In this paper, we propose Fin-Fact, a benchmark dataset for multimodal fact-checking within the financial domain. Notably, it includes professional fact-checker annotations and justifications, providing expertise and credibility. With its multimodal nature encompassing both textual and visual content, Fin-Fact provides complementary information sources to enhance factuality analysis. Its primary objective is combating misinformation in finance, fostering transparency, and building trust in financial reporting and news dissemination. By offering insightful explanations, Fin-Fact empowers users, including domain experts and end-users, to understand the reasoning behind fact-checking decisions, validating claim credibility, and fostering trust in the fact-checking process. The Fin-Fact dataset, along with our experimental codes is available at https://github.com/IIT-DM/Fin-Fact/. 3 authors · Sep 15, 2023
- Yseop at FinSim-3 Shared Task 2021: Specializing Financial Domain Learning with Phrase Representations In this paper, we present our approaches for the FinSim-3 Shared Task 2021: Learning Semantic Similarities for the Financial Domain. The aim of this shared task is to correctly classify a list of given terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. For our system submission, we evaluate two methods: a Sentence-RoBERTa (SRoBERTa) embeddings model pre-trained on a custom corpus, and a dual word-sentence embeddings model that builds on the first method by improving the proposed baseline word embeddings construction using the FastText model to boost the classification performance. Our system ranks 2nd overall on both metrics, scoring 0.917 on Average Accuracy and 1.141 on Mean Rank. 3 authors · Aug 21, 2021
78 FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models We introduce FinTral, a suite of state-of-the-art multimodal large language models (LLMs) built upon the Mistral-7b model and tailored for financial analysis. FinTral integrates textual, numerical, tabular, and image data. We enhance FinTral with domain-specific pretraining, instruction fine-tuning, and RLAIF training by exploiting a large collection of textual and visual datasets we curate for this work. We also introduce an extensive benchmark featuring nine tasks and 25 datasets for evaluation, including hallucinations in the financial domain. Our FinTral model trained with direct preference optimization employing advanced Tools and Retrieval methods, dubbed FinTral-DPO-T&R, demonstrates an exceptional zero-shot performance. It outperforms ChatGPT-3.5 in all tasks and surpasses GPT-4 in five out of nine tasks, marking a significant advancement in AI-driven financial technology. We also demonstrate that FinTral has the potential to excel in real-time analysis and decision-making in diverse financial contexts. 4 authors · Feb 16, 2024 5
57 Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data. To address these limitations, we introduce Open-FinLLMs, a series of Financial LLMs. We begin with FinLLaMA, pre-trained on a 52 billion token financial corpus, incorporating text, tables, and time-series data to embed comprehensive financial knowledge. FinLLaMA is then instruction fine-tuned with 573K financial instructions, resulting in FinLLaMA-instruct, which enhances task performance. Finally, we present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types. Extensive evaluations demonstrate FinLLaMA's superior performance over LLaMA3-8B, LLaMA3.1-8B, and BloombergGPT in both zero-shot and few-shot settings across 19 and 4 datasets, respectively. FinLLaMA-instruct outperforms GPT-4 and other Financial LLMs on 15 datasets. FinLLaVA excels in understanding tables and charts across 4 multimodal tasks. Additionally, FinLLaMA achieves impressive Sharpe Ratios in trading simulations, highlighting its robust financial application capabilities. We will continually maintain and improve our models and benchmarks to support ongoing innovation in academia and industry. 39 authors · Aug 20, 2024 2
- FinGen: A Dataset for Argument Generation in Finance Thinking about the future is one of the important activities that people do in daily life. Futurists also pay a lot of effort into figuring out possible scenarios for the future. We argue that the exploration of this direction is still in an early stage in the NLP research. To this end, we propose three argument generation tasks in the financial application scenario. Our experimental results show these tasks are still big challenges for representative generation models. Based on our empirical results, we further point out several unresolved issues and challenges in this research direction. 4 authors · May 31, 2024
- Stock Market Prediction using Natural Language Processing -- A Survey The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas. 2 authors · Aug 26, 2022
- Multimodal Banking Dataset: Understanding Client Needs through Event Sequences Financial organizations collect a huge amount of data about clients that typically has a temporal (sequential) structure and is collected from various sources (modalities). Due to privacy issues, there are no large-scale open-source multimodal datasets of event sequences, which significantly limits the research in this area. In this paper, we present the industrial-scale publicly available multimodal banking dataset, MBD, that contains more than 1.5M corporate clients with several modalities: 950M bank transactions, 1B geo position events, 5M embeddings of dialogues with technical support and monthly aggregated purchases of four bank's products. All entries are properly anonymized from real proprietary bank data. Using this dataset, we introduce a novel benchmark with two business tasks: campaigning (purchase prediction in the next month) and matching of clients. We provide numerical results that demonstrate the superiority of our multi-modal baselines over single-modal techniques for each task. As a result, the proposed dataset can open new perspectives and facilitate the future development of practically important large-scale multimodal algorithms for event sequences. HuggingFace Link: https://huggingface.co/datasets/ai-lab/MBD Github Link: https://github.com/Dzhambo/MBD 7 authors · Sep 26, 2024
14 Can GPT models be Financial Analysts? An Evaluation of ChatGPT and GPT-4 on mock CFA Exams Large Language Models (LLMs) have demonstrated remarkable performance on a wide range of Natural Language Processing (NLP) tasks, often matching or even beating state-of-the-art task-specific models. This study aims at assessing the financial reasoning capabilities of LLMs. We leverage mock exam questions of the Chartered Financial Analyst (CFA) Program to conduct a comprehensive evaluation of ChatGPT and GPT-4 in financial analysis, considering Zero-Shot (ZS), Chain-of-Thought (CoT), and Few-Shot (FS) scenarios. We present an in-depth analysis of the models' performance and limitations, and estimate whether they would have a chance at passing the CFA exams. Finally, we outline insights into potential strategies and improvements to enhance the applicability of LLMs in finance. In this perspective, we hope this work paves the way for future studies to continue enhancing LLMs for financial reasoning through rigorous evaluation. 9 authors · Oct 12, 2023 3
4 Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text Analytics? An Examination on Several Typical Tasks The most recent large language models such as ChatGPT and GPT-4 have garnered significant attention, as they are capable of generating high-quality responses to human input. Despite the extensive testing of ChatGPT and GPT-4 on generic text corpora, showcasing their impressive capabilities, a study focusing on financial corpora has not been conducted. In this study, we aim to bridge this gap by examining the potential of ChatGPT and GPT-4 as a solver for typical financial text analytic problems in the zero-shot or few-shot setting. Specifically, we assess their capabilities on four representative tasks over five distinct financial textual datasets. The preliminary study shows that ChatGPT and GPT-4 struggle on tasks such as financial named entity recognition (NER) and sentiment analysis, where domain-specific knowledge is required, while they excel in numerical reasoning tasks. We report both the strengths and limitations of the current versions of ChatGPT and GPT-4, comparing them to the state-of-the-art finetuned models as well as pretrained domain-specific generative models. Our experiments provide qualitative studies, through which we hope to help understand the capability of the existing models and facilitate further improvements. 5 authors · May 9, 2023 1
- NIFTY Financial News Headlines Dataset We introduce and make publicly available the NIFTY Financial News Headlines dataset, designed to facilitate and advance research in financial market forecasting using large language models (LLMs). This dataset comprises two distinct versions tailored for different modeling approaches: (i) NIFTY-LM, which targets supervised fine-tuning (SFT) of LLMs with an auto-regressive, causal language-modeling objective, and (ii) NIFTY-RL, formatted specifically for alignment methods (like reinforcement learning from human feedback (RLHF)) to align LLMs via rejection sampling and reward modeling. Each dataset version provides curated, high-quality data incorporating comprehensive metadata, market indices, and deduplicated financial news headlines systematically filtered and ranked to suit modern LLM frameworks. We also include experiments demonstrating some applications of the dataset in tasks like stock price movement and the role of LLM embeddings in information acquisition/richness. The NIFTY dataset along with utilities (like truncating prompt's context length systematically) are available on Hugging Face at https://huggingface.co/datasets/raeidsaqur/NIFTY. 4 authors · May 15, 2024
1 BUSTER: a "BUSiness Transaction Entity Recognition" dataset Albeit Natural Language Processing has seen major breakthroughs in the last few years, transferring such advances into real-world business cases can be challenging. One of the reasons resides in the displacement between popular benchmarks and actual data. Lack of supervision, unbalanced classes, noisy data and long documents often affect real problems in vertical domains such as finance, law and health. To support industry-oriented research, we present BUSTER, a BUSiness Transaction Entity Recognition dataset. The dataset consists of 3779 manually annotated documents on financial transactions. We establish several baselines exploiting both general-purpose and domain-specific language models. The best performing model is also used to automatically annotate 6196 documents, which we release as an additional silver corpus to BUSTER. 4 authors · Feb 15, 2024
- FinRobot: AI Agent for Equity Research and Valuation with Large Language Models As financial markets grow increasingly complex, there is a rising need for automated tools that can effectively assist human analysts in equity research, particularly within sell-side research. While Generative AI (GenAI) has attracted significant attention in this field, existing AI solutions often fall short due to their narrow focus on technical factors and limited capacity for discretionary judgment. These limitations hinder their ability to adapt to new data in real-time and accurately assess risks, which diminishes their practical value for investors. This paper presents FinRobot, the first AI agent framework specifically designed for equity research. FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst. The system is structured around three specialized agents: the Data-CoT Agent, which aggregates diverse data sources for robust financial integration; the Concept-CoT Agent, which mimics an analysts reasoning to generate actionable insights; and the Thesis-CoT Agent, which synthesizes these insights into a coherent investment thesis and report. FinRobot provides thorough company analysis supported by precise numerical data, industry-appropriate valuation metrics, and realistic risk assessments. Its dynamically updatable data pipeline ensures that research remains timely and relevant, adapting seamlessly to new financial information. Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors. We open-source FinRobot at https://github. com/AI4Finance-Foundation/FinRobot. 4 authors · Nov 13, 2024
5 SynFinTabs: A Dataset of Synthetic Financial Tables for Information and Table Extraction Table extraction from document images is a challenging AI problem, and labelled data for many content domains is difficult to come by. Existing table extraction datasets often focus on scientific tables due to the vast amount of academic articles that are readily available, along with their source code. However, there are significant layout and typographical differences between tables found across scientific, financial, and other domains. Current datasets often lack the words, and their positions, contained within the tables, instead relying on unreliable OCR to extract these features for training modern machine learning models on natural language processing tasks. Therefore, there is a need for a more general method of obtaining labelled data. We present SynFinTabs, a large-scale, labelled dataset of synthetic financial tables. Our hope is that our method of generating these synthetic tables is transferable to other domains. To demonstrate the effectiveness of our dataset in training models to extract information from table images, we create FinTabQA, a layout large language model trained on an extractive question-answering task. We test our model using real-world financial tables and compare it to a state-of-the-art generative model and discuss the results. We make the dataset, model, and dataset generation code publicly available. 4 authors · Dec 5, 2024 2
- Harmful Terms and Where to Find Them: Measuring and Modeling Unfavorable Financial Terms and Conditions in Shopping Websites at Scale Terms and conditions for online shopping websites often contain terms that can have significant financial consequences for customers. Despite their impact, there is currently no comprehensive understanding of the types and potential risks associated with unfavorable financial terms. Furthermore, there are no publicly available detection systems or datasets to systematically identify or mitigate these terms. In this paper, we take the first steps toward solving this problem with three key contributions. First, we introduce TermMiner, an automated data collection and topic modeling pipeline to understand the landscape of unfavorable financial terms. Second, we create ShopTC-100K, a dataset of terms and conditions from shopping websites in the Tranco top 100K list, comprising 1.8 million terms from 8,251 websites. Consequently, we develop a taxonomy of 22 types from 4 categories of unfavorable financial terms -- spanning purchase, post-purchase, account termination, and legal aspects. Third, we build TermLens, an automated detector that uses Large Language Models (LLMs) to identify unfavorable financial terms. Fine-tuned on an annotated dataset, TermLens achieves an F1 score of 94.6\% and a false positive rate of 2.3\% using GPT-4o. When applied to shopping websites from the Tranco top 100K, we find that 42.06\% of these sites contain at least one unfavorable financial term, with such terms being more prevalent on less popular websites. Case studies further highlight the financial risks and customer dissatisfaction associated with unfavorable financial terms, as well as the limitations of existing ecosystem defenses. 5 authors · Feb 3
- Multi-Label Topic Model for Financial Textual Data This paper presents a multi-label topic model for financial texts like ad-hoc announcements, 8-K filings, finance related news or annual reports. I train the model on a new financial multi-label database consisting of 3,044 German ad-hoc announcements that are labeled manually using 20 predefined, economically motivated topics. The best model achieves a macro F1 score of more than 85%. Translating the data results in an English version of the model with similar performance. As application of the model, I investigate differences in stock market reactions across topics. I find evidence for strong positive or negative market reactions for some topics, like announcements of new Large Scale Projects or Bankruptcy Filings, while I do not observe significant price effects for some other topics. Furthermore, in contrast to previous studies, the multi-label structure of the model allows to analyze the effects of co-occurring topics on stock market reactions. For many cases, the reaction to a specific topic depends heavily on the co-occurrence with other topics. For example, if allocated capital from a Seasoned Equity Offering (SEO) is used for restructuring a company in the course of a Bankruptcy Proceeding, the market reacts positively on average. However, if that capital is used for covering unexpected, additional costs from the development of new drugs, the SEO implies negative reactions on average. 1 authors · Nov 10, 2023
- Advanced User Credit Risk Prediction Model using LightGBM, XGBoost and Tabnet with SMOTEENN Bank credit risk is a significant challenge in modern financial transactions, and the ability to identify qualified credit card holders among a large number of applicants is crucial for the profitability of a bank'sbank's credit card business. In the past, screening applicants'applicants' conditions often required a significant amount of manual labor, which was time-consuming and labor-intensive. Although the accuracy and reliability of previously used ML models have been continuously improving, the pursuit of more reliable and powerful AI intelligent models is undoubtedly the unremitting pursuit by major banks in the financial industry. In this study, we used a dataset of over 40,000 records provided by a commercial bank as the research object. We compared various dimensionality reduction techniques such as PCA and T-SNE for preprocessing high-dimensional datasets and performed in-depth adaptation and tuning of distributed models such as LightGBM and XGBoost, as well as deep models like Tabnet. After a series of research and processing, we obtained excellent research results by combining SMOTEENN with these techniques. The experiments demonstrated that LightGBM combined with PCA and SMOTEENN techniques can assist banks in accurately predicting potential high-quality customers, showing relatively outstanding performance compared to other models. 6 authors · Aug 6, 2024
32 Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance Despite Greece's pivotal role in the global economy, large language models (LLMs) remain underexplored for Greek financial context due to the linguistic complexity of Greek and the scarcity of domain-specific datasets. Previous efforts in multilingual financial natural language processing (NLP) have exposed considerable performance disparities, yet no dedicated Greek financial benchmarks or Greek-specific financial LLMs have been developed until now. To bridge this gap, we introduce Plutus-ben, the first Greek Financial Evaluation Benchmark, and Plutus-8B, the pioneering Greek Financial LLM, fine-tuned with Greek domain-specific data. Plutus-ben addresses five core financial NLP tasks in Greek: numeric and textual named entity recognition, question answering, abstractive summarization, and topic classification, thereby facilitating systematic and reproducible LLM assessments. To underpin these tasks, we present three novel, high-quality Greek financial datasets, thoroughly annotated by expert native Greek speakers, augmented by two existing resources. Our comprehensive evaluation of 22 LLMs on Plutus-ben reveals that Greek financial NLP remains challenging due to linguistic complexity, domain-specific terminology, and financial reasoning gaps. These findings underscore the limitations of cross-lingual transfer, the necessity for financial expertise in Greek-trained models, and the challenges of adapting financial LLMs to Greek text. We release Plutus-ben, Plutus-8B, and all associated datasets publicly to promote reproducible research and advance Greek financial NLP, fostering broader multilingual inclusivity in finance. 10 authors · Feb 25 2
- FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data Large language models (LLMs) excel at generating human-like responses but often struggle with interactive tasks that require access to real-time information. This limitation poses challenges in finance, where models must access up-to-date information, such as recent news or price movements, to support decision-making. To address this, we introduce Financial Agent, a knowledge-grounding approach for LLMs to handle financial queries using real-time text and tabular data. Our contributions are threefold: First, we develop a Financial Context Dataset of over 50,000 financial queries paired with the required context. Second, we train FinBloom 7B, a custom 7 billion parameter LLM, on 14 million financial news articles from Reuters and Deutsche Presse-Agentur, alongside 12 million Securities and Exchange Commission (SEC) filings. Third, we fine-tune FinBloom 7B using the Financial Context Dataset to serve as a Financial Agent. This agent generates relevant financial context, enabling efficient real-time data retrieval to answer user queries. By reducing latency and eliminating the need for users to manually provide accurate data, our approach significantly enhances the capability of LLMs to handle dynamic financial tasks. Our proposed approach makes real-time financial decisions, algorithmic trading and other related tasks streamlined, and is valuable in contexts with high-velocity data flows. 3 authors · Feb 4
1 CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications The integration of Large Language Models (LLMs) into financial analysis has garnered significant attention in the NLP community. This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks: financial classification, financial text summarization, and single stock trading. We adopted Llama3-8B and Mistral-7B as base models, fine-tuning them through Parameter Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model performance, we combine datasets from task 1 and task 2 for data fusion. Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities. 4 authors · Jul 2, 2024
- BookSQL: A Large Scale Text-to-SQL Dataset for Accounting Domain Several large-scale datasets (e.g., WikiSQL, Spider) for developing natural language interfaces to databases have recently been proposed. These datasets cover a wide breadth of domains but fall short on some essential domains, such as finance and accounting. Given that accounting databases are used worldwide, particularly by non-technical people, there is an imminent need to develop models that could help extract information from accounting databases via natural language queries. In this resource paper, we aim to fill this gap by proposing a new large-scale Text-to-SQL dataset for the accounting and financial domain: BookSQL. The dataset consists of 100k natural language queries-SQL pairs, and accounting databases of 1 million records. We experiment with and analyze existing state-of-the-art models (including GPT-4) for the Text-to-SQL task on BookSQL. We find significant performance gaps, thus pointing towards developing more focused models for this domain. 5 authors · Jun 12, 2024
- FAR-Trans: An Investment Dataset for Financial Asset Recommendation Financial asset recommendation (FAR) is a sub-domain of recommender systems which identifies useful financial securities for investors, with the expectation that they will invest capital on the recommended assets. FAR solutions analyse and learn from multiple data sources, including time series pricing data, customer profile information and expectations, as well as past investments. However, most models have been developed over proprietary datasets, making a comparison over a common benchmark impossible. In this paper, we aim to solve this problem by introducing FAR-Trans, the first public dataset for FAR, containing pricing information and retail investor transactions acquired from a large European financial institution. We also provide a bench-marking comparison between eleven FAR algorithms over the data for use as future baselines. The dataset can be downloaded from https://doi.org/10.5525/gla.researchdata.1658 . 3 authors · Jul 11, 2024
- FinVerse: An Autonomous Agent System for Versatile Financial Analysis With the significant advancements in cognitive intelligence driven by LLMs, autonomous agent systems have attracted extensive attention. Despite this growing interest, the development of stable and efficient agent systems poses substantial practical challenges. In this paper, we introduce FinVerse, a meticulously crafted agent system designed for a broad range of financial topics. FinVerse integrates over 600 financial APIs, enabling access to more accurate and extensive financial information compared to generalist agents. To enhance financial information processing capabilities, FinVerse is equipped with an embedded code interpreter, enabling the execution of complex data analysis tasks with precision and efficiency. Our work includes an empirical comparison of several LLMs in driving FinVerse. Specifically, we propose our own scheme for training LLMs using SFT to optimize LLM performance within FinVerse. Recognizing the scarcity of specialized datasets to build LLMs for agents, we have constructed a dataset and plan to make it open-source, providing a valuable resource for peer application developers. The demo video has been released on YouTube at https://www.youtube.com/watch?v=sk8L9_Wv7J4 5 authors · Jun 10, 2024
- Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores. 5 authors · Jun 20, 2013
- Impact of News on the Commodity Market: Dataset and Results Over the last few years, machine learning based methods have been applied to extract information from news flow in the financial domain. However, this information has mostly been in the form of the financial sentiments contained in the news headlines, primarily for the stock prices. In our current work, we propose that various other dimensions of information can be extracted from news headlines, which will be of interest to investors, policy-makers and other practitioners. We propose a framework that extracts information such as past movements and expected directionality in prices, asset comparison and other general information that the news is referring to. We apply this framework to the commodity "Gold" and train the machine learning models using a dataset of 11,412 human-annotated news headlines (released with this study), collected from the period 2000-2019. We experiment to validate the causal effect of news flow on gold prices and observe that the information produced from our framework significantly impacts the future gold price. 2 authors · Sep 9, 2020
- Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models For a long-time, researchers have been developing a reliable and accurate predictive model for stock price prediction. According to the literature, if predictive models are correctly designed and refined, they can painstakingly and faithfully estimate future stock values. This paper demonstrates a set of time series, econometric, and various learning-based models for stock price prediction. The data of Infosys, ICICI, and SUN PHARMA from the period of January 2004 to December 2019 was used here for training and testing the models to know which model performs best in which sector. One time series model (Holt-Winters Exponential Smoothing), one econometric model (ARIMA), two machine Learning models (Random Forest and MARS), and two deep learning-based models (simple RNN and LSTM) have been included in this paper. MARS has been proved to be the best performing machine learning model, while LSTM has proved to be the best performing deep learning model. But overall, for all three sectors - IT (on Infosys data), Banking (on ICICI data), and Health (on SUN PHARMA data), MARS has proved to be the best performing model in sales forecasting. 3 authors · Nov 1, 2021
- Stock Portfolio Optimization Using a Deep Learning LSTM Model Predicting future stock prices and their movement patterns is a complex problem. Hence, building a portfolio of capital assets using the predicted prices to achieve the optimization between its return and risk is an even more difficult task. This work has carried out an analysis of the time series of the historical prices of the top five stocks from the nine different sectors of the Indian stock market from January 1, 2016, to December 31, 2020. Optimum portfolios are built for each of these sectors. For predicting future stock prices, a long-and-short-term memory (LSTM) model is also designed and fine-tuned. After five months of the portfolio construction, the actual and the predicted returns and risks of each portfolio are computed. The predicted and the actual returns of each portfolio are found to be high, indicating the high precision of the LSTM model. 3 authors · Nov 8, 2021
- Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis Monetary policy pronouncements by Federal Open Market Committee (FOMC) are a major driver of financial market returns. We construct the largest tokenized and annotated dataset of FOMC speeches, meeting minutes, and press conference transcripts in order to understand how monetary policy influences financial markets. In this study, we develop a novel task of hawkish-dovish classification and benchmark various pre-trained language models on the proposed dataset. Using the best-performing model (RoBERTa-large), we construct a measure of monetary policy stance for the FOMC document release days. To evaluate the constructed measure, we study its impact on the treasury market, stock market, and macroeconomic indicators. Our dataset, models, and code are publicly available on Huggingface and GitHub under CC BY-NC 4.0 license. 3 authors · May 13, 2023
- Financial Document Causality Detection Shared Task (FinCausal 2020) We present the FinCausal 2020 Shared Task on Causality Detection in Financial Documents and the associated FinCausal dataset, and discuss the participating systems and results. Two sub-tasks are proposed: a binary classification task (Task 1) and a relation extraction task (Task 2). A total of 16 teams submitted runs across the two Tasks and 13 of them contributed with a system description paper. This workshop is associated to the Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation (FNP-FNS 2020), held at The 28th International Conference on Computational Linguistics (COLING'2020), Barcelona, Spain on September 12, 2020. 6 authors · Dec 4, 2020
- FiNER: Financial Named Entity Recognition Dataset and Weak-Supervision Model The development of annotated datasets over the 21st century has helped us truly realize the power of deep learning. Most of the datasets created for the named-entity-recognition (NER) task are not domain specific. Finance domain presents specific challenges to the NER task and a domain specific dataset would help push the boundaries of finance research. In our work, we develop the first high-quality NER dataset for the finance domain. To set the benchmark for the dataset, we develop and test a weak-supervision-based framework for the NER task. We extend the current weak-supervision framework to make it employable for span-level classification. Our weak-ner framework and the dataset are publicly available on GitHub and Hugging Face. 4 authors · Feb 22, 2023
1 Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models Sentiment analysis is a vital tool for uncovering insights from financial articles, news, and social media, shaping our understanding of market movements. Despite the impressive capabilities of large language models (LLMs) in financial natural language processing (NLP), they still struggle with accurately interpreting numerical values and grasping financial context, limiting their effectiveness in predicting financial sentiment. In this paper, we introduce a simple yet effective instruction tuning approach to address these issues. By transforming a small portion of supervised financial sentiment analysis data into instruction data and fine-tuning a general-purpose LLM with this method, we achieve remarkable advancements in financial sentiment analysis. In the experiment, our approach outperforms state-of-the-art supervised sentiment analysis models, as well as widely used LLMs like ChatGPT and LLaMAs, particularly in scenarios where numerical understanding and contextual comprehension are vital. 3 authors · Jun 21, 2023
- DSC-IITISM at FinCausal 2021: Combining POS tagging with Attention-based Contextual Representations for Identifying Causal Relationships in Financial Documents Causality detection draws plenty of attention in the field of Natural Language Processing and linguistics research. It has essential applications in information retrieval, event prediction, question answering, financial analysis, and market research. In this study, we explore several methods to identify and extract cause-effect pairs in financial documents using transformers. For this purpose, we propose an approach that combines POS tagging with the BIO scheme, which can be integrated with modern transformer models to address this challenge of identifying causality in a given text. Our best methodology achieves an F1-Score of 0.9551, and an Exact Match Score of 0.8777 on the blind test in the FinCausal-2021 Shared Task at the FinCausal 2021 Workshop. 3 authors · Oct 31, 2021
- An Effective Data Creation Pipeline to Generate High-quality Financial Instruction Data for Large Language Model At the beginning era of large language model, it is quite critical to generate a high-quality financial dataset to fine-tune a large language model for financial related tasks. Thus, this paper presents a carefully designed data creation pipeline for this purpose. Particularly, we initiate a dialogue between an AI investor and financial expert using ChatGPT and incorporate the feedback of human financial experts, leading to the refinement of the dataset. This pipeline yielded a robust instruction tuning dataset comprised of 103k multi-turn chats. Extensive experiments have been conducted on this dataset to evaluate the model's performance by adopting an external GPT-4 as the judge. The promising experimental results verify that our approach led to significant advancements in generating accurate, relevant, and financial-style responses from AI models, and thus providing a powerful tool for applications within the financial sector. 4 authors · Jul 31, 2023
- An Earth Mover's Distance Based Graph Distance Metric For Financial Statements Quantifying the similarity between a group of companies has proven to be useful for several purposes, including company benchmarking, fraud detection, and searching for investment opportunities. This exercise can be done using a variety of data sources, such as company activity data and financial data. However, ledger account data is widely available and is standardized to a large extent. Such ledger accounts within a financial statement can be represented by means of a tree, i.e. a special type of graph, representing both the values of the ledger accounts and the relationships between them. Given their broad availability and rich information content, financial statements form a prime data source based on which company similarities or distances could be computed. In this paper, we present a graph distance metric that enables one to compute the similarity between the financial statements of two companies. We conduct a comprehensive experimental study using real-world financial data to demonstrate the usefulness of our proposed distance metric. The experimental results show promising results on a number of use cases. This method may be useful for investors looking for investment opportunities, government officials attempting to identify fraudulent companies, and accountants looking to benchmark a group of companies based on their financial statements. 4 authors · Dec 14, 2021
- Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance Extraction of sentiment signals from news text, stock message boards, and business reports, for stock movement prediction, has been a rising field of interest in finance. Building upon past literature, the most recent works attempt to better capture sentiment from sentences with complex syntactic structures by introducing aspect-level sentiment classification (ASC). Despite the growing interest, however, fine-grained sentiment analysis has not been fully explored in non-English literature due to the shortage of annotated finance-specific data. Accordingly, it is necessary for non-English languages to leverage datasets and pre-trained language models (PLM) of different domains, languages, and tasks to best their performance. To facilitate finance-specific ASC research in the Korean language, we build KorFinASC, a Korean aspect-level sentiment classification dataset for finance consisting of 12,613 human-annotated samples, and explore methods of intermediate transfer learning. Our experiments indicate that past research has been ignorant towards the potentially wrong knowledge of financial entities encoded during the training phase, which has overestimated the predictive power of PLMs. In our work, we use the term "non-stationary knowledge'' to refer to information that was previously correct but is likely to change, and present "TGT-Masking'', a novel masking pattern to restrict PLMs from speculating knowledge of the kind. Finally, through a series of transfer learning with TGT-Masking applied we improve 22.63% of classification accuracy compared to standalone models on KorFinASC. 4 authors · Jan 8, 2023
- THaLLE: Text Hyperlocally Augmented Large Language Extension -- Technical Report Recent advancements in Large Language Models (LLMs) have revealed new capabilities and opportunities across the technological landscape. However, the practicality of very large LLMs is challenged by their high compute cost, which does not justify the benefits given their limited capability compared to humans. While smaller, more practical LLMs have shown potential in financial analysis, though they are not yet fully proficient, as evidenced by their near-passing performance on the Chartered Financial Analyst (CFA) exam. In this work, we present Financial Analyst Extension to our Text Hyperlocally Augmented Large Language Extension (THaLLE), a series of 8B LLMs consistently achieving highest performance on mock CFA exams against models of comparable size. We thoroughly document the fine-tuning techniques used to facilitate future research. Additionally, we introduce the use of Flare CFA, a publicly available dataset for evaluating LLMs as a financial advisor. 9 authors · Jun 11, 2024
- Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio of stocks with the identification of proper weights of allocation to achieve the optimized values of return and risk. We present optimized portfolios based on the seven sectors of the Indian economy. The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020. Optimum portfolios are designed on the selected seven sectors. An LSTM regression model is also designed for predicting future stock prices. Five months after the construction of the portfolios, i.e., on June 1, 2021, the actual and predicted returns and risks of each portfolio are computed. The predicted and the actual returns indicate the very high accuracy of the LSTM model. 4 authors · Mar 2, 2022
- Transfer Learning for Portfolio Optimization In this work, we explore the possibility of utilizing transfer learning techniques to address the financial portfolio optimization problem. We introduce a novel concept called "transfer risk", within the optimization framework of transfer learning. A series of numerical experiments are conducted from three categories: cross-continent transfer, cross-sector transfer, and cross-frequency transfer. In particular, 1. a strong correlation between the transfer risk and the overall performance of transfer learning methods is established, underscoring the significance of transfer risk as a viable indicator of "transferability"; 2. transfer risk is shown to provide a computationally efficient way to identify appropriate source tasks in transfer learning, enhancing the efficiency and effectiveness of the transfer learning approach; 3. additionally, the numerical experiments offer valuable new insights for portfolio management across these different settings. 4 authors · Jul 25, 2023 1
2 FinVis-GPT: A Multimodal Large Language Model for Financial Chart Analysis In this paper, we propose FinVis-GPT, a novel multimodal large language model (LLM) specifically designed for financial chart analysis. By leveraging the power of LLMs and incorporating instruction tuning and multimodal capabilities, FinVis-GPT is capable of interpreting financial charts and providing valuable analysis. To train FinVis-GPT, a financial task oriented dataset was generated for pre-training alignment and instruction tuning, comprising various types of financial charts and their corresponding descriptions. We evaluate the model performance via several case studies due to the time limit, and the promising results demonstrated that FinVis-GPT is superior in various financial chart related tasks, including generating descriptions, answering questions and predicting future market trends, surpassing existing state-of-the-art multimodal LLMs. The proposed FinVis-GPT serves as a pioneering effort in utilizing multimodal LLMs in the finance domain and our generated dataset will be release for public use in the near future to speedup related research. 5 authors · Jul 31, 2023
- Show me your NFT and I tell you how it will perform: Multimodal representation learning for NFT selling price prediction Non-Fungible Tokens (NFTs) represent deeds of ownership, based on blockchain technologies and smart contracts, of unique crypto assets on digital art forms (e.g., artworks or collectibles). In the spotlight after skyrocketing in 2021, NFTs have attracted the attention of crypto enthusiasts and investors intent on placing promising investments in this profitable market. However, the NFT financial performance prediction has not been widely explored to date. In this work, we address the above problem based on the hypothesis that NFT images and their textual descriptions are essential proxies to predict the NFT selling prices. To this purpose, we propose MERLIN, a novel multimodal deep learning framework designed to train Transformer-based language and visual models, along with graph neural network models, on collections of NFTs' images and texts. A key aspect in MERLIN is its independence on financial features, as it exploits only the primary data a user interested in NFT trading would like to deal with, i.e., NFT images and textual descriptions. By learning dense representations of such data, a price-category classification task is performed by MERLIN models, which can also be tuned according to user preferences in the inference phase to mimic different risk-return investment profiles. Experimental evaluation on a publicly available dataset has shown that MERLIN models achieve significant performances according to several financial assessment criteria, fostering profitable investments, and also beating baseline machine-learning classifiers based on financial features. 3 authors · Feb 3, 2023
1 SusGen-GPT: A Data-Centric LLM for Financial NLP and Sustainability Report Generation The rapid growth of the financial sector and the rising focus on Environmental, Social, and Governance (ESG) considerations highlight the need for advanced NLP tools. However, open-source LLMs proficient in both finance and ESG domains remain scarce. To address this gap, we introduce SusGen-30K, a category-balanced dataset comprising seven financial NLP tasks and ESG report generation, and propose TCFD-Bench, a benchmark for evaluating sustainability report generation. Leveraging this dataset, we developed SusGen-GPT, a suite of models achieving state-of-the-art performance across six adapted and two off-the-shelf tasks, trailing GPT-4 by only 2% despite using 7-8B parameters compared to GPT-4's 1,700B. Based on this, we propose the SusGen system, integrated with Retrieval-Augmented Generation (RAG), to assist in sustainability report generation. This work demonstrates the efficiency of our approach, advancing research in finance and ESG. 8 authors · Dec 14, 2024
- Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating To reject the Efficient Market Hypothesis a set of 5 technical indicators and 23 fundamental indicators was identified to establish the possibility of generating excess returns on the stock market. Leveraging these data points and various classification machine learning models, trading data of the 505 equities on the US S&P500 over the past 20 years was analysed to develop a classifier effective for our cause. From any given day, we were able to predict the direction of change in price by 1% up to 10 days in the future. The predictions had an overall accuracy of 83.62% with a precision of 85% for buy signals and a recall of 100% for sell signals. Moreover, we grouped equities by their sector and repeated the experiment to see if grouping similar assets together positively effected the results but concluded that it showed no significant improvements in the performance rejecting the idea of sector-based analysis. Also, using feature ranking we could identify an even smaller set of 6 indicators while maintaining similar accuracies as that from the original 28 features and also uncovered the importance of buy, hold and sell analyst ratings as they came out to be the top contributors in the model. Finally, to evaluate the effectiveness of the classifier in real-life situations, it was backtested on FAANG equities using a modest trading strategy where it generated high returns of above 60% over the term of the testing dataset. In conclusion, our proposed methodology with the combination of purposefully picked features shows an improvement over the previous studies, and our model predicts the direction of 1% price changes on the 10th day with high confidence and with enough buffer to even build a robotic trading system. 2 authors · Mar 12, 2021
- Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM Model Portfolio optimization has been a broad and intense area of interest for quantitative and statistical finance researchers and financial analysts. It is a challenging task to design a portfolio of stocks to arrive at the optimized values of the return and risk. This paper presents an algorithmic approach for designing optimum risk and eigen portfolios for five thematic sectors of the NSE of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Optimum risk and eigen portfolios for each sector are designed based on ten critical stocks from the sector. An LSTM model is designed for predicting future stock prices. Seven months after the portfolios were formed, on Aug 3, 2021, the actual returns of the portfolios are compared with the LSTM-predicted returns. The predicted and the actual returns indicate a very high-level accuracy of the LSTM model. 3 authors · Feb 6, 2022
- Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market The stock market offers a platform where people buy and sell shares of publicly listed companies. Generally, stock prices are quite volatile; hence predicting them is a daunting task. There is still much research going to develop more accuracy in stock price prediction. Portfolio construction refers to the allocation of different sector stocks optimally to achieve a maximum return by taking a minimum risk. A good portfolio can help investors earn maximum profit by taking a minimum risk. Beginning with Dow Jones Theory a lot of advancement has happened in the area of building efficient portfolios. In this project, we have tried to predict the future value of a few stocks from six important sectors of the Indian economy and also built a portfolio. As part of the project, our team has conducted a study of the performance of various Time series, machine learning, and deep learning models in stock price prediction on selected stocks from the chosen six important sectors of the economy. As part of building an efficient portfolio, we have studied multiple portfolio optimization theories beginning with the Modern Portfolio theory. We have built a minimum variance portfolio and optimal risk portfolio for all the six chosen sectors by using the daily stock prices over the past five years as training data and have also conducted back testing to check the performance of the portfolio. We look forward to continuing our study in the area of stock price prediction and asset allocation and consider this project as the first stepping stone. 7 authors · Jul 1, 2022
- Russian Financial Statements Database: A firm-level collection of the universe of financial statements The Russian Financial Statements Database (RFSD) is an open, harmonized collection of annual unconsolidated financial statements of the universe of Russian firms in 2011-2023. It is the first open data set with information on every active firm in the country, including non-filing firms. With 56.6 million geolocated firm-year observations gathered from two official sources, the RFSD features multiple end-user quality-of-life improvements such as data imputation, statement articulation, harmonization across data providers and formats, and data enrichment. Extensive internal and external validation shows that most statements articulate well while their aggregates display higher correlation with the regional GDP than the previous gridded GDP data products. We also examine the direction and magnitude of the reporting bias by comparing the universe of firms that are required to file with the actual filers. The RFSD can be used in various economic applications as diverse as calibration of micro-founded models, estimation of markups and productivity, or assessing industry organization and market power. 3 authors · Jan 10
- AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms. 1 authors · Jul 29, 2024
- Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks Designing an optimum portfolio for allocating suitable weights to its constituent assets so that the return and risk associated with the portfolio are optimized is a computationally hard problem. The seminal work of Markowitz that attempted to solve the problem by estimating the future returns of the stocks is found to perform sub-optimally on real-world stock market data. This is because the estimation task becomes extremely challenging due to the stochastic and volatile nature of stock prices. This work illustrates three approaches to portfolio design minimizing the risk, optimizing the risk, and assigning equal weights to the stocks of a portfolio. Thirteen critical sectors listed on the National Stock Exchange (NSE) of India are first chosen. Three portfolios are designed following the above approaches choosing the top ten stocks from each sector based on their free-float market capitalization. The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022. The portfolios are evaluated on the stock price data from Jan 1, 2022, to Dec 31, 2022. The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified. 2 authors · Sep 24, 2023
39 Retrieval-augmented Large Language Models for Financial Time Series Forecasting Stock movement prediction, a fundamental task in financial time-series forecasting, requires identifying and retrieving critical influencing factors from vast amounts of time-series data. However, existing text-trained or numeric similarity-based retrieval methods fall short in handling complex financial analysis. To address this, we propose the first retrieval-augmented generation (RAG) framework for financial time-series forecasting, featuring three key innovations: a fine-tuned 1B parameter large language model (StockLLM) as the backbone, a novel candidate selection method leveraging LLM feedback, and a training objective that maximizes similarity between queries and historically significant sequences. This enables our retriever, FinSeer, to uncover meaningful patterns while minimizing noise in complex financial data. We also construct new datasets integrating financial indicators and historical stock prices to train FinSeer and ensure robust evaluation. Experimental results demonstrate that our RAG framework outperforms bare StockLLM and random retrieval, highlighting its effectiveness, while FinSeer surpasses existing retrieval methods, achieving an 8\% higher accuracy on BIGDATA22 and retrieving more impactful sequences. This work underscores the importance of tailored retrieval models in financial forecasting and provides a novel framework for future research. 13 authors · Feb 9 2
- TopoLedgerBERT: Topological Learning of Ledger Description Embeddings using Siamese BERT-Networks This paper addresses a long-standing problem in the field of accounting: mapping company-specific ledger accounts to a standardized chart of accounts. We propose a novel solution, TopoLedgerBERT, a unique sentence embedding method devised specifically for ledger account mapping. This model integrates hierarchical information from the charts of accounts into the sentence embedding process, aiming to accurately capture both the semantic similarity and the hierarchical structure of the ledger accounts. In addition, we introduce a data augmentation strategy that enriches the training data and, as a result, increases the performance of our proposed model. Compared to benchmark methods, TopoLedgerBERT demonstrates superior performance in terms of accuracy and mean reciprocal rank. 3 authors · Apr 19, 2024
1 Optimize Cash Collection: Use Machine learning to Predicting Invoice Payment Predicting invoice payment is valuable in multiple industries and supports decision-making processes in most financial workflows. However, the challenge in this realm involves dealing with complex data and the lack of data related to decisions-making processes not registered in the accounts receivable system. This work presents a prototype developed as a solution devised during a partnership with a multinational bank to support collectors in predicting invoices payment. The proposed prototype reached up to 77\% of accuracy, which improved the prioritization of customers and supported the daily work of collectors. With the presented results, one expects to support researchers dealing with the problem of invoice payment prediction to get insights and examples of how to tackle issues present in real data. 6 authors · Dec 20, 2019
- Economy Watchers Survey provides Datasets and Tasks for Japanese Financial Domain Many natural language processing (NLP) tasks in English or general domains are widely available and are often used to evaluate pre-trained language models. In contrast, there are fewer tasks available for languages other than English and for the financial domain. In particular, tasks in Japanese and the financial domain are limited. We construct two large datasets using materials published by a Japanese central government agency. The datasets provide three Japanese financial NLP tasks, which include a 3-class and 12-class classification for categorizing sentences, as well as a 5-class classification task for sentiment analysis. Our datasets are designed to be comprehensive and up-to-date, leveraging an automatic update framework that ensures the latest task datasets are publicly available anytime. 2 authors · Jul 19, 2024
- NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task Financial Forecasting Financial forecasting has been an important and active area of machine learning research because of the challenges it presents and the potential rewards that even minor improvements in prediction accuracy or forecasting may entail. Traditionally, financial forecasting has heavily relied on quantitative indicators and metrics derived from structured financial statements. Earnings conference call data, including text and audio, is an important source of unstructured data that has been used for various prediction tasks using deep earning and related approaches. However, current deep learning-based methods are limited in the way that they deal with numeric data; numbers are typically treated as plain-text tokens without taking advantage of their underlying numeric structure. This paper describes a numeric-oriented hierarchical transformer model to predict stock returns, and financial risk using multi-modal aligned earnings calls data by taking advantage of the different categories of numbers (monetary, temporal, percentages etc.) and their magnitude. We present the results of a comprehensive evaluation of NumHTML against several state-of-the-art baselines using a real-world publicly available dataset. The results indicate that NumHTML significantly outperforms the current state-of-the-art across a variety of evaluation metrics and that it has the potential to offer significant financial gains in a practical trading context. 5 authors · Jan 5, 2022
- Numerical Reasoning for Financial Reports Financial reports offer critical insights into a company's operations, yet their extensive length typically spanning 30 40 pages poses challenges for swift decision making in dynamic markets. To address this, we leveraged finetuned Large Language Models (LLMs) to distill key indicators and operational metrics from these reports basis questions from the user. We devised a method to locate critical data, and leverage the FinQA dataset to fine-tune both Llama-2 7B and T5 models for customized question answering. We achieved results comparable to baseline on the final numerical answer, a competitive accuracy in numerical reasoning and calculation. 4 authors · Dec 22, 2023
- Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI. 2 authors · Feb 16, 2023
- A Portfolio Rebalancing Approach for the Indian Stock Market This chapter presents a calendar rebalancing approach to portfolios of stocks in the Indian stock market. Ten important sectors of the Indian economy are first selected. For each of these sectors, the top ten stocks are identified based on their free-float market capitalization values. Using the ten stocks in each sector, a sector-specific portfolio is designed. In this study, the historical stock prices are used from January 4, 2021, to September 20, 2023 (NSE Website). The portfolios are designed based on the training data from January 4, 2021 to June 30, 2022. The performances of the portfolios are tested over the period from July 1, 2022, to September 20, 2023. The calendar rebalancing approach presented in the chapter is based on a yearly rebalancing method. However, the method presented is perfectly flexible and can be adapted for weekly or monthly rebalancing. The rebalanced portfolios for the ten sectors are analyzed in detail for their performances. The performance results are not only indicative of the relative performances of the sectors over the training (i.e., in-sample) data and test (out-of-sample) data, but they also reflect the overall effectiveness of the proposed portfolio rebalancing approach. 4 authors · Oct 15, 2023
1 Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models We examine the potential of ChatGPT and other large language models in predicting stock market returns using news headlines. We use ChatGPT to assess whether each headline is good, bad, or neutral for firms' stock prices. We document a significantly positive correlation between ChatGPT scores and subsequent daily stock returns. We find that ChatGPT outperforms traditional sentiment analysis methods. More basic models such as GPT-1, GPT-2, and BERT cannot accurately forecast returns, indicating return predictability is an emerging capacity of complex language models. Long-short strategies based on ChatGPT-4 deliver the highest Sharpe ratio. Furthermore, we find predictability in both small and large stocks, suggesting market underreaction to company news. Predictability is stronger among smaller stocks and stocks with bad news, consistent with limits-to-arbitrage also playing an important role. Finally, we propose a new method to evaluate and understand the models' reasoning capabilities. Overall, our results suggest that incorporating advanced language models into the investment decision-making process can yield more accurate predictions and enhance the performance of quantitative trading strategies. 2 authors · Apr 15, 2023
1 FiNER: Financial Numeric Entity Recognition for XBRL Tagging Publicly traded companies are required to submit periodic reports with eXtensive Business Reporting Language (XBRL) word-level tags. Manually tagging the reports is tedious and costly. We, therefore, introduce XBRL tagging as a new entity extraction task for the financial domain and release FiNER-139, a dataset of 1.1M sentences with gold XBRL tags. Unlike typical entity extraction datasets, FiNER-139 uses a much larger label set of 139 entity types. Most annotated tokens are numeric, with the correct tag per token depending mostly on context, rather than the token itself. We show that subword fragmentation of numeric expressions harms BERT's performance, allowing word-level BILSTMs to perform better. To improve BERT's performance, we propose two simple and effective solutions that replace numeric expressions with pseudo-tokens reflecting original token shapes and numeric magnitudes. We also experiment with FIN-BERT, an existing BERT model for the financial domain, and release our own BERT (SEC-BERT), pre-trained on financial filings, which performs best. Through data and error analysis, we finally identify possible limitations to inspire future work on XBRL tagging. 7 authors · Mar 12, 2022
- Stock Volatility Prediction using Time Series and Deep Learning Approach Volatility clustering is a crucial property that has a substantial impact on stock market patterns. Nonetheless, developing robust models for accurately predicting future stock price volatility is a difficult research topic. For predicting the volatility of three equities listed on India's national stock market (NSE), we propose multiple volatility models depending on the generalized autoregressive conditional heteroscedasticity (GARCH), Glosten-Jagannathan-GARCH (GJR-GARCH), Exponential general autoregressive conditional heteroskedastic (EGARCH), and LSTM framework. Sector-wise stocks have been chosen in our study. The sectors which have been considered are banking, information technology (IT), and pharma. yahoo finance has been used to obtain stock price data from Jan 2017 to Dec 2021. Among the pulled-out records, the data from Jan 2017 to Dec 2020 have been taken for training, and data from 2021 have been chosen for testing our models. The performance of predicting the volatility of stocks of three sectors has been evaluated by implementing three different types of GARCH models as well as by the LSTM model are compared. It has been observed the LSTM performed better in predicting volatility in pharma over banking and IT sectors. In tandem, it was also observed that E-GARCH performed better in the case of the banking sector and for IT and pharma, GJR-GARCH performed better. 3 authors · Oct 5, 2022
- Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio with weights allocated to the stocks in a way that optimizes its return and the risk. This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Sector-wise portfolios are built based on their ten most significant stocks. An LSTM model is also designed for predicting future stock prices. Six months after the construction of the portfolios, i.e., on Jul 1, 2021, the actual returns and the LSTM-predicted returns for the portfolios are computed. A comparison of the predicted and the actual returns indicate a high accuracy level of the LSTM model. 3 authors · Mar 2, 2022
- Boosting Stock Price Prediction with Anticipated Macro Policy Changes Prediction of stock prices plays a significant role in aiding the decision-making of investors. Considering its importance, a growing literature has emerged trying to forecast stock prices with improved accuracy. In this study, we introduce an innovative approach for forecasting stock prices with greater accuracy. We incorporate external economic environment-related information along with stock prices. In our novel approach, we improve the performance of stock price prediction by taking into account variations due to future expected macroeconomic policy changes as investors adjust their current behavior ahead of time based on expected future macroeconomic policy changes. Furthermore, we incorporate macroeconomic variables along with historical stock prices to make predictions. Results from this strongly support the inclusion of future economic policy changes along with current macroeconomic information. We confirm the supremacy of our method over the conventional approach using several tree-based machine-learning algorithms. Results are strongly conclusive across various machine learning models. Our preferred model outperforms the conventional approach with an RMSE value of 1.61 compared to an RMSE value of 1.75 from the conventional approach. 5 authors · Oct 27, 2023
- [Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus After last year's successful BabyLM Challenge, the competition will be hosted again in 2024/2025. The overarching goals of the challenge remain the same; however, some of the competition rules will be different. The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques. Second, we are relaxing the rules around pretraining data, and will now allow participants to construct their own datasets provided they stay within the 100M-word or 10M-word budget. Third, we introduce a multimodal vision-and-language track, and will release a corpus of 50% text-only and 50% image-text multimodal data as a starting point for LM model training. The purpose of this CfP is to provide rules for this year's challenge, explain these rule changes and their rationale in greater detail, give a timeline of this year's competition, and provide answers to frequently asked questions from last year's challenge. 10 authors · Apr 9, 2024
6 Shai: A large language model for asset management This paper introduces "Shai" a 10B level large language model specifically designed for the asset management industry, built upon an open-source foundational model. With continuous pre-training and fine-tuning using a targeted corpus, Shai demonstrates enhanced performance in tasks relevant to its domain, outperforming baseline models. Our research includes the development of an innovative evaluation framework, which integrates professional qualification exams, tailored tasks, open-ended question answering, and safety assessments, to comprehensively assess Shai's capabilities. Furthermore, we discuss the challenges and implications of utilizing large language models like GPT-4 for performance assessment in asset management, suggesting a combination of automated evaluation and human judgment. Shai's development, showcasing the potential and versatility of 10B-level large language models in the financial sector with significant performance and modest computational requirements, hopes to provide practical insights and methodologies to assist industry peers in their similar endeavors. 6 authors · Dec 21, 2023 2
- GERNERMED++: Transfer Learning in German Medical NLP We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-pp 3 authors · Jun 29, 2022
- Future Language Modeling from Temporal Document History Predicting the future is of great interest across many aspects of human activity. Businesses are interested in future trends, traders are interested in future stock prices, and companies are highly interested in future technological breakthroughs. While there are many automated systems for predicting future numerical data, such as weather, stock prices, and demand for products, there is relatively little work in automatically predicting textual data. Humans are interested in textual data predictions because it is a natural format for our consumption, and experts routinely make predictions in a textual format (Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). However, there has been relatively little formalization of this general problem in the machine learning or natural language processing communities. To address this gap, we introduce the task of future language modeling: probabilistic modeling of texts in the future based on a temporal history of texts. To our knowledge, our work is the first work to formalize the task of predicting the future in this way. We show that it is indeed possible to build future language models that improve upon strong non-temporal language model baselines, opening the door to working on this important, and widely applicable problem. 2 authors · Apr 16, 2024
- Convolutional Feature Extraction and Neural Arithmetic Logic Units for Stock Prediction Stock prediction is a topic undergoing intense study for many years. Finance experts and mathematicians have been working on a way to predict the future stock price so as to decide to buy the stock or sell it to make profit. Stock experts or economists, usually analyze on the previous stock values using technical indicators, sentiment analysis etc to predict the future stock price. In recent years, many researches have extensively used machine learning for predicting the stock behaviour. In this paper we propose data driven deep learning approach to predict the future stock value with the previous price with the feature extraction property of convolutional neural network and to use Neural Arithmetic Logic Units with it. 2 authors · May 18, 2019
- Enhancing Financial Market Predictions: Causality-Driven Feature Selection This paper introduces the FinSen dataset that revolutionizes financial market analysis by integrating economic and financial news articles from 197 countries with stock market data. The dataset's extensive coverage spans 15 years from 2007 to 2023 with temporal information, offering a rich, global perspective with 160,000 records on financial market news. Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability. Utilizing the FinSen dataset, we introduce an innovative Focal Calibration Loss, reducing Expected Calibration Error (ECE) to 3.34 percent with the DAN 3 model. This not only improves prediction accuracy but also aligns probabilistic forecasts closely with real outcomes, crucial for the financial sector where predicted probability is paramount. Our approach demonstrates the effectiveness of combining sentiment analysis with precise calibration techniques for trustworthy financial forecasting where the cost of misinterpretation can be high. Finsen Data can be found at [this github URL](https://github.com/EagleAdelaide/FinSen_Dataset.git). 3 authors · Aug 2, 2024
- Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data With the increasing volume of high-frequency data in the information age, both challenges and opportunities arise in the prediction of stock volatility. On one hand, the outcome of prediction using tradition method combining stock technical and macroeconomic indicators still leaves room for improvement; on the other hand, macroeconomic indicators and peoples' search record on those search engines affecting their interested topics will intuitively have an impact on the stock volatility. For the convenience of assessment of the influence of these indicators, macroeconomic indicators and stock technical indicators are then grouped into objective factors, while Baidu search indices implying people's interested topics are defined as subjective factors. To align different frequency data, we introduce GARCH-MIDAS model. After mixing all the above data, we then feed them into Transformer model as part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86. 8 authors · Sep 28, 2023
- Synthesizing Realistic Data for Table Recognition To overcome the limitations and challenges of current automatic table data annotation methods and random table data synthesis approaches, we propose a novel method for synthesizing annotation data specifically designed for table recognition. This method utilizes the structure and content of existing complex tables, facilitating the efficient creation of tables that closely replicate the authentic styles found in the target domain. By leveraging the actual structure and content of tables from Chinese financial announcements, we have developed the first extensive table annotation dataset in this domain. We used this dataset to train several recent deep learning-based end-to-end table recognition models. Additionally, we have established the inaugural benchmark for real-world complex tables in the Chinese financial announcement domain, using it to assess the performance of models trained on our synthetic data, thereby effectively validating our method's practicality and effectiveness. Furthermore, we applied our synthesis method to augment the FinTabNet dataset, extracted from English financial announcements, by increasing the proportion of tables with multiple spanning cells to introduce greater complexity. Our experiments show that models trained on this augmented dataset achieve comprehensive improvements in performance, especially in the recognition of tables with multiple spanning cells. 4 authors · Apr 17, 2024
1 CFGPT: Chinese Financial Assistant with Large Language Model Large language models (LLMs) have demonstrated great potential in natural language processing tasks within the financial domain. In this work, we present a Chinese Financial Generative Pre-trained Transformer framework, named CFGPT, which includes a dataset~(CFData) for pre-training and supervised fine-tuning, a financial LLM~(CFLLM) to adeptly manage financial texts, and a deployment framework~(CFAPP) designed to navigate real-world financial applications. The CFData comprising both a pre-training dataset and a supervised fine-tuning dataset, where the pre-training dataset collates Chinese financial data and analytics, alongside a smaller subset of general-purpose text with 584M documents and 141B tokens in total, and the supervised fine-tuning dataset is tailored for six distinct financial tasks, embodying various facets of financial analysis and decision-making with 1.5M instruction pairs and 1.5B tokens in total. The CFLLM, which is based on InternLM-7B to balance the model capability and size, is trained on CFData in two stage, continued pre-training and supervised fine-tuning. The CFAPP is centered on large language models (LLMs) and augmented with additional modules to ensure multifaceted functionality in real-world application. Our codes are released at https://github.com/TongjiFinLab/CFGPT. 7 authors · Sep 19, 2023
2 Predicting Stock Market Time-Series Data using CNN-LSTM Neural Network Model Stock market is often important as it represents the ownership claims on businesses. Without sufficient stocks, a company cannot perform well in finance. Predicting a stock market performance of a company is nearly hard because every time the prices of a company stock keeps changing and not constant. So, its complex to determine the stock data. But if the previous performance of a company in stock market is known, then we can track the data and provide predictions to stockholders in order to wisely take decisions on handling the stocks to a company. To handle this, many machine learning models have been invented but they didn't succeed due to many reasons like absence of advanced libraries, inaccuracy of model when made to train with real time data and much more. So, to track the patterns and the features of data, a CNN-LSTM Neural Network can be made. Recently, CNN is now used in Natural Language Processing (NLP) based applications, so by identifying the features from stock data and converting them into tensors, we can obtain the features and then send it to LSTM neural network to find the patterns and thereby predicting the stock market for given period of time. The accuracy of the CNN-LSTM NN model is found to be high even when allowed to train on real-time stock market data. This paper describes about the features of the custom CNN-LSTM model, experiments we made with the model (like training with stock market datasets, performance comparison with other models) and the end product we obtained at final stage. 4 authors · May 21, 2023
- Accurate Stock Price Forecasting Using Robust and Optimized Deep Learning Models Designing robust frameworks for precise prediction of future prices of stocks has always been considered a very challenging research problem. The advocates of the classical efficient market hypothesis affirm that it is impossible to accurately predict the future prices in an efficiently operating market due to the stochastic nature of the stock price variables. However, numerous propositions exist in the literature with varying degrees of sophistication and complexity that illustrate how algorithms and models can be designed for making efficient, accurate, and robust predictions of stock prices. We present a gamut of ten deep learning models of regression for precise and robust prediction of the future prices of the stock of a critical company in the auto sector of India. Using a very granular stock price collected at 5 minutes intervals, we train the models based on the records from 31st Dec, 2012 to 27th Dec, 2013. The testing of the models is done using records from 30th Dec, 2013 to 9th Jan 2015. We explain the design principles of the models and analyze the results of their performance based on accuracy in forecasting and speed of execution. 2 authors · Mar 28, 2021
3 No Language is an Island: Unifying Chinese and English in Financial Large Language Models, Instruction Data, and Benchmarks While the progression of Large Language Models (LLMs) has notably propelled financial analysis, their application has largely been confined to singular language realms, leaving untapped the potential of bilingual Chinese-English capacity. To bridge this chasm, we introduce ICE-PIXIU, seamlessly amalgamating the ICE-INTENT model and ICE-FLARE benchmark for bilingual financial analysis. ICE-PIXIU uniquely integrates a spectrum of Chinese tasks, alongside translated and original English datasets, enriching the breadth and depth of bilingual financial modeling. It provides unrestricted access to diverse model variants, a substantial compilation of diverse cross-lingual and multi-modal instruction data, and an evaluation benchmark with expert annotations, comprising 10 NLP tasks, 20 bilingual specific tasks, totaling 1,185k datasets. Our thorough evaluation emphasizes the advantages of incorporating these bilingual datasets, especially in translation tasks and utilizing original English data, enhancing both linguistic flexibility and analytical acuity in financial contexts. Notably, ICE-INTENT distinguishes itself by showcasing significant enhancements over conventional LLMs and existing financial LLMs in bilingual milieus, underscoring the profound impact of robust bilingual data on the accuracy and efficacy of financial NLP. 10 authors · Mar 10, 2024
1 Empowering Many, Biasing a Few: Generalist Credit Scoring through Large Language Models Credit and risk assessments are cornerstones of the financial landscape, impacting both individual futures and broader societal constructs. Existing credit scoring models often exhibit limitations stemming from knowledge myopia and task isolation. In response, we formulate three hypotheses and undertake an extensive case study to investigate LLMs' viability in credit assessment. Our empirical investigations unveil LLMs' ability to overcome the limitations inherent in conventional models. We introduce a novel benchmark curated for credit assessment purposes, fine-tune a specialized Credit and Risk Assessment Large Language Model (CALM), and rigorously examine the biases that LLMs may harbor. Our findings underscore LLMs' potential in revolutionizing credit assessment, showcasing their adaptability across diverse financial evaluations, and emphasizing the critical importance of impartial decision-making in the financial sector. Our datasets, models, and benchmarks are open-sourced for other researchers. 8 authors · Sep 30, 2023
- SignBank+: Multilingual Sign Language Translation Dataset This work advances the field of sign language machine translation by focusing on dataset quality and simplification of the translation system. We introduce SignBank+, a clean version of the SignBank dataset, optimized for machine translation. Contrary to previous works that employ complex factorization techniques for translation, we advocate for a simplified text-to-text translation approach. Our evaluation shows that models trained on SignBank+ surpass those on the original dataset, establishing a new benchmark and providing an open resource for future research. 2 authors · Sep 20, 2023
1 FNSPID: A Comprehensive Financial News Dataset in Time Series Financial market predictions utilize historical data to anticipate future stock prices and market trends. Traditionally, these predictions have focused on the statistical analysis of quantitative factors, such as stock prices, trading volumes, inflation rates, and changes in industrial production. Recent advancements in large language models motivate the integrated financial analysis of both sentiment data, particularly market news, and numerical factors. Nonetheless, this methodology frequently encounters constraints due to the paucity of extensive datasets that amalgamate both quantitative and qualitative sentiment analyses. To address this challenge, we introduce a large-scale financial dataset, namely, Financial News and Stock Price Integration Dataset (FNSPID). It comprises 29.7 million stock prices and 15.7 million time-aligned financial news records for 4,775 S&P500 companies, covering the period from 1999 to 2023, sourced from 4 stock market news websites. We demonstrate that FNSPID excels existing stock market datasets in scale and diversity while uniquely incorporating sentiment information. Through financial analysis experiments on FNSPID, we propose: (1) the dataset's size and quality significantly boost market prediction accuracy; (2) adding sentiment scores modestly enhances performance on the transformer-based model; (3) a reproducible procedure that can update the dataset. Completed work, code, documentation, and examples are available at github.com/Zdong104/FNSPID. FNSPID offers unprecedented opportunities for the financial research community to advance predictive modeling and analysis. 3 authors · Feb 8, 2024
- Transformers with Attentive Federated Aggregation for Time Series Stock Forecasting Recent innovations in transformers have shown their superior performance in natural language processing (NLP) and computer vision (CV). The ability to capture long-range dependencies and interactions in sequential data has also triggered a great interest in time series modeling, leading to the widespread use of transformers in many time series applications. However, being the most common and crucial application, the adaptation of transformers to time series forecasting has remained limited, with both promising and inconsistent results. In contrast to the challenges in NLP and CV, time series problems not only add the complexity of order or temporal dependence among input sequences but also consider trend, level, and seasonality information that much of this data is valuable for decision making. The conventional training scheme has shown deficiencies regarding model overfitting, data scarcity, and privacy issues when working with transformers for a forecasting task. In this work, we propose attentive federated transformers for time series stock forecasting with better performance while preserving the privacy of participating enterprises. Empirical results on various stock data from the Yahoo! Finance website indicate the superiority of our proposed scheme in dealing with the above challenges and data heterogeneity in federated learning. 5 authors · Jan 22, 2024
- Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning In the field of quantitative trading, it is common practice to transform raw historical stock data into indicative signals for the market trend. Such signals are called alpha factors. Alphas in formula forms are more interpretable and thus favored by practitioners concerned with risk. In practice, a set of formulaic alphas is often used together for better modeling precision, so we need to find synergistic formulaic alpha sets that work well together. However, most traditional alpha generators mine alphas one by one separately, overlooking the fact that the alphas would be combined later. In this paper, we propose a new alpha-mining framework that prioritizes mining a synergistic set of alphas, i.e., it directly uses the performance of the downstream combination model to optimize the alpha generator. Our framework also leverages the strong exploratory capabilities of reinforcement learning~(RL) to better explore the vast search space of formulaic alphas. The contribution to the combination models' performance is assigned to be the return used in the RL process, driving the alpha generator to find better alphas that improve upon the current set. Experimental evaluations on real-world stock market data demonstrate both the effectiveness and the efficiency of our framework for stock trend forecasting. The investment simulation results show that our framework is able to achieve higher returns compared to previous approaches. 7 authors · May 25, 2023
- A Survey of Deep Learning Approaches for OCR and Document Understanding Documents are a core part of many businesses in many fields such as law, finance, and technology among others. Automatic understanding of documents such as invoices, contracts, and resumes is lucrative, opening up many new avenues of business. The fields of natural language processing and computer vision have seen tremendous progress through the development of deep learning such that these methods have started to become infused in contemporary document understanding systems. In this survey paper, we review different techniques for document understanding for documents written in English and consolidate methodologies present in literature to act as a jumping-off point for researchers exploring this area. 4 authors · Nov 26, 2020
- Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market Stock price prediction is a challenging task and a lot of propositions exist in the literature in this area. Portfolio construction is a process of choosing a group of stocks and investing in them optimally to maximize the return while minimizing the risk. Since the time when Markowitz proposed the Modern Portfolio Theory, several advancements have happened in the area of building efficient portfolios. An investor can get the best benefit out of the stock market if the investor invests in an efficient portfolio and could take the buy or sell decision in advance, by estimating the future asset value of the portfolio with a high level of precision. In this project, we have built an efficient portfolio and to predict the future asset value by means of individual stock price prediction of the stocks in the portfolio. As part of building an efficient portfolio we have studied multiple portfolio optimization methods beginning with the Modern Portfolio theory. We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors by using past daily stock prices over the past five years as the training data, and have also conducted back testing to check the performance of the portfolio. A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting. 6 authors · Jan 14, 2022
- Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model Predictive model design for accurately predicting future stock prices has always been considered an interesting and challenging research problem. The task becomes complex due to the volatile and stochastic nature of the stock prices in the real world which is affected by numerous controllable and uncontrollable variables. This paper presents an optimized predictive model built on long-and-short-term memory (LSTM) architecture for automatically extracting past stock prices from the web over a specified time interval and predicting their future prices for a specified forecast horizon, and forecasts the future stock prices. The model is deployed for making buy and sell transactions based on its predicted results for 70 important stocks from seven different sectors listed in the National Stock Exchange (NSE) of India. The profitability of each sector is derived based on the total profit yielded by the stocks in that sector over a period from Jan 1, 2010 to Aug 26, 2021. The sectors are compared based on their profitability values. The prediction accuracy of the model is also evaluated for each sector. The results indicate that the model is highly accurate in predicting future stock prices. 3 authors · Nov 9, 2021
- CrudeBERT: Applying Economic Theory towards fine-tuning Transformer-based Sentiment Analysis Models to the Crude Oil Market Predicting market movements based on the sentiment of news media has a long tradition in data analysis. With advances in natural language processing, transformer architectures have emerged that enable contextually aware sentiment classification. Nevertheless, current methods built for the general financial market such as FinBERT cannot distinguish asset-specific value-driving factors. This paper addresses this shortcoming by presenting a method that identifies and classifies events that impact supply and demand in the crude oil markets within a large corpus of relevant news headlines. We then introduce CrudeBERT, a new sentiment analysis model that draws upon these events to contextualize and fine-tune FinBERT, thereby yielding improved sentiment classifications for headlines related to the crude oil futures market. An extensive evaluation demonstrates that CrudeBERT outperforms proprietary and open-source solutions in the domain of crude oil. 4 authors · May 10, 2023
- Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention. 2 authors · Nov 22, 2024
1 SeQwen at the Financial Misinformation Detection Challenge Task: Sequential Learning for Claim Verification and Explanation Generation in Financial Domains This paper presents the system description of our entry for the COLING 2025 FMD challenge, focusing on misinformation detection in financial domains. We experimented with a combination of large language models, including Qwen, Mistral, and Gemma-2, and leveraged pre-processing and sequential learning for not only identifying fraudulent financial content but also generating coherent, and concise explanations that clarify the rationale behind the classifications. Our approach achieved competitive results with an F1-score of 0.8283 for classification, and ROUGE-1 of 0.7253 for explanations. This work highlights the transformative potential of LLMs in financial applications, offering insights into their capabilities for combating misinformation and enhancing transparency while identifying areas for future improvement in robustness and domain adaptation. 7 authors · Nov 30, 2024
- Modeling financial analysts' decision making via the pragmatics and semantics of earnings calls Every fiscal quarter, companies hold earnings calls in which company executives respond to questions from analysts. After these calls, analysts often change their price target recommendations, which are used in equity research reports to help investors make decisions. In this paper, we examine analysts' decision making behavior as it pertains to the language content of earnings calls. We identify a set of 20 pragmatic features of analysts' questions which we correlate with analysts' pre-call investor recommendations. We also analyze the degree to which semantic and pragmatic features from an earnings call complement market data in predicting analysts' post-call changes in price targets. Our results show that earnings calls are moderately predictive of analysts' decisions even though these decisions are influenced by a number of other factors including private communication with company executives and market conditions. A breakdown of model errors indicates disparate performance on calls from different market sectors. 2 authors · Jun 6, 2019
1 RobBERT-2022: Updating a Dutch Language Model to Account for Evolving Language Use Large transformer-based language models, e.g. BERT and GPT-3, outperform previous architectures on most natural language processing tasks. Such language models are first pre-trained on gigantic corpora of text and later used as base-model for finetuning on a particular task. Since the pre-training step is usually not repeated, base models are not up-to-date with the latest information. In this paper, we update RobBERT, a RoBERTa-based state-of-the-art Dutch language model, which was trained in 2019. First, the tokenizer of RobBERT is updated to include new high-frequent tokens present in the latest Dutch OSCAR corpus, e.g. corona-related words. Then we further pre-train the RobBERT model using this dataset. To evaluate if our new model is a plug-in replacement for RobBERT, we introduce two additional criteria based on concept drift of existing tokens and alignment for novel tokens.We found that for certain language tasks this update results in a significant performance increase. These results highlight the benefit of continually updating a language model to account for evolving language use. 3 authors · Nov 15, 2022
- Designing Efficient Pair-Trading Strategies Using Cointegration for the Indian Stock Market A pair-trading strategy is an approach that utilizes the fluctuations between prices of a pair of stocks in a short-term time frame, while in the long-term the pair may exhibit a strong association and co-movement pattern. When the prices of the stocks exhibit significant divergence, the shares of the stock that gains in price are sold (a short strategy) while the shares of the other stock whose price falls are bought (a long strategy). This paper presents a cointegration-based approach that identifies stocks listed in the five sectors of the National Stock Exchange (NSE) of India for designing efficient pair-trading portfolios. Based on the stock prices from Jan 1, 2018, to Dec 31, 2020, the cointegrated stocks are identified and the pairs are formed. The pair-trading portfolios are evaluated on their annual returns for the year 2021. The results show that the pairs of stocks from the auto and the realty sectors, in general, yielded the highest returns among the five sectors studied in the work. However, two among the five pairs from the information technology (IT) sector are found to have yielded negative returns. 1 authors · Nov 13, 2022
- ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases Large Language Models (LLMs) have shown the potential to revolutionize natural language processing tasks in various domains, sparking great interest in vertical-specific large models. However, unlike proprietary models such as BloombergGPT and FinGPT, which have leveraged their unique data accumulations to make strides in the finance domain, there hasn't not many similar large language models in the Chinese legal domain to facilitate its digital transformation. In this paper, we propose an open-source legal large language model named ChatLaw. Due to the importance of data quality, we carefully designed a legal domain fine-tuning dataset. Additionally, to overcome the problem of model hallucinations in legal data screening during reference data retrieval, we introduce a method that combines vector database retrieval with keyword retrieval to effectively reduce the inaccuracy of relying solely on vector database retrieval. Furthermore, we propose a self-attention method to enhance the ability of large models to overcome errors present in reference data, further optimizing the issue of model hallucinations at the model level and improving the problem-solving capabilities of large models. We also open-sourced our model and part of the data at https://github.com/PKU-YuanGroup/ChatLaw. 5 authors · Jun 28, 2023
1 Contrastive Similarity Learning for Market Forecasting: The ContraSim Framework We introduce the Contrastive Similarity Space Embedding Algorithm (ContraSim), a novel framework for uncovering the global semantic relationships between daily financial headlines and market movements. ContraSim operates in two key stages: (I) Weighted Headline Augmentation, which generates augmented financial headlines along with a semantic fine-grained similarity score, and (II) Weighted Self-Supervised Contrastive Learning (WSSCL), an extended version of classical self-supervised contrastive learning that uses the similarity metric to create a refined weighted embedding space. This embedding space clusters semantically similar headlines together, facilitating deeper market insights. Empirical results demonstrate that integrating ContraSim features into financial forecasting tasks improves classification accuracy from WSJ headlines by 7%. Moreover, leveraging an information density analysis, we find that the similarity spaces constructed by ContraSim intrinsically cluster days with homogeneous market movement directions, indicating that ContraSim captures market dynamics independent of ground truth labels. Additionally, ContraSim enables the identification of historical news days that closely resemble the headlines of the current day, providing analysts with actionable insights to predict market trends by referencing analogous past events. 4 authors · Feb 21
- Experimenting with Multi-modal Information to Predict Success of Indian IPOs With consistent growth in Indian Economy, Initial Public Offerings (IPOs) have become a popular avenue for investment. With the modern technology simplifying investments, more investors are interested in making data driven decisions while subscribing for IPOs. In this paper, we describe a machine learning and natural language processing based approach for estimating if an IPO will be successful. We have extensively studied the impact of various facts mentioned in IPO filing prospectus, macroeconomic factors, market conditions, Grey Market Price, etc. on the success of an IPO. We created two new datasets relating to the IPOs of Indian companies. Finally, we investigated how information from multiple modalities (texts, images, numbers, and categorical features) can be used for estimating the direction and underpricing with respect to opening, high and closing prices of stocks on the IPO listing day. 4 authors · Dec 8, 2024
1 Transforming Sentiment Analysis in the Financial Domain with ChatGPT Financial sentiment analysis plays a crucial role in decoding market trends and guiding strategic trading decisions. Despite the deployment of advanced deep learning techniques and language models to refine sentiment analysis in finance, this study breaks new ground by investigating the potential of large language models, particularly ChatGPT 3.5, in financial sentiment analysis, with a strong emphasis on the foreign exchange market (forex). Employing a zero-shot prompting approach, we examine multiple ChatGPT prompts on a meticulously curated dataset of forex-related news headlines, measuring performance using metrics such as precision, recall, f1-score, and Mean Absolute Error (MAE) of the sentiment class. Additionally, we probe the correlation between predicted sentiment and market returns as an additional evaluation approach. ChatGPT, compared to FinBERT, a well-established sentiment analysis model for financial texts, exhibited approximately 35\% enhanced performance in sentiment classification and a 36\% higher correlation with market returns. By underlining the significance of prompt engineering, particularly in zero-shot contexts, this study spotlights ChatGPT's potential to substantially boost sentiment analysis in financial applications. By sharing the utilized dataset, our intention is to stimulate further research and advancements in the field of financial services. 5 authors · Aug 13, 2023
- Pricing European Options with Google AutoML, TensorFlow, and XGBoost Researchers have been using Neural Networks and other related machine-learning techniques to price options since the early 1990s. After three decades of improvements in machine learning techniques, computational processing power, cloud computing, and data availability, this paper is able to provide a comparison of using Google Cloud's AutoML Regressor, TensorFlow Neural Networks, and XGBoost Gradient Boosting Decision Trees for pricing European Options. All three types of models were able to outperform the Black Scholes Model in terms of mean absolute error. These results showcase the potential of using historical data from an option's underlying asset for pricing European options, especially when using machine learning algorithms that learn complex patterns that traditional parametric models do not take into account. 1 authors · Jul 2, 2023
- INVESTORBENCH: A Benchmark for Financial Decision-Making Tasks with LLM-based Agent Recent advancements have underscored the potential of large language model (LLM)-based agents in financial decision-making. Despite this progress, the field currently encounters two main challenges: (1) the lack of a comprehensive LLM agent framework adaptable to a variety of financial tasks, and (2) the absence of standardized benchmarks and consistent datasets for assessing agent performance. To tackle these issues, we introduce InvestorBench, the first benchmark specifically designed for evaluating LLM-based agents in diverse financial decision-making contexts. InvestorBench enhances the versatility of LLM-enabled agents by providing a comprehensive suite of tasks applicable to different financial products, including single equities like stocks, cryptocurrencies and exchange-traded funds (ETFs). Additionally, we assess the reasoning and decision-making capabilities of our agent framework using thirteen different LLMs as backbone models, across various market environments and tasks. Furthermore, we have curated a diverse collection of open-source, multi-modal datasets and developed a comprehensive suite of environments for financial decision-making. This establishes a highly accessible platform for evaluating financial agents' performance across various scenarios. 15 authors · Dec 24, 2024
- Causal Inference for Banking Finance and Insurance A Survey Causal Inference plays an significant role in explaining the decisions taken by statistical models and artificial intelligence models. Of late, this field started attracting the attention of researchers and practitioners alike. This paper presents a comprehensive survey of 37 papers published during 1992-2023 and concerning the application of causal inference to banking, finance, and insurance. The papers are categorized according to the following families of domains: (i) Banking, (ii) Finance and its subdomains such as corporate finance, governance finance including financial risk and financial policy, financial economics, and Behavioral finance, and (iii) Insurance. Further, the paper covers the primary ingredients of causal inference namely, statistical methods such as Bayesian Causal Network, Granger Causality and jargon used thereof such as counterfactuals. The review also recommends some important directions for future research. In conclusion, we observed that the application of causal inference in the banking and insurance sectors is still in its infancy, and thus more research is possible to turn it into a viable method. 4 authors · Jul 31, 2023
1 Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps? We used a dataset of daily Bloomberg Financial Market Summaries from 2010 to 2023, reposted on large financial media, to determine how global news headlines may affect stock market movements using ChatGPT and a two-stage prompt approach. We document a statistically significant positive correlation between the sentiment score and future equity market returns over short to medium term, which reverts to a negative correlation over longer horizons. Validation of this correlation pattern across multiple equity markets indicates its robustness across equity regions and resilience to non-linearity, evidenced by comparison of Pearson and Spearman correlations. Finally, we provide an estimate of the optimal horizon that strikes a balance between reactivity to new information and correlation. 6 authors · Jan 9, 2024
1 GPT Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves Markets and policymakers around the world hang on the consequential monetary policy decisions made by the Federal Open Market Committee (FOMC). Publicly available textual documentation of their meetings provides insight into members' attitudes about the economy. We use GPT-4 to quantify dissent among members on the topic of inflation. We find that transcripts and minutes reflect the diversity of member views about the macroeconomic outlook in a way that is lost or omitted from the public statements. In fact, diverging opinions that shed light upon the committee's "true" attitudes are almost entirely omitted from the final statements. Hence, we argue that forecasting FOMC sentiment based solely on statements will not sufficiently reflect dissent among the hawks and doves. 6 authors · Jul 26, 2024
- LegalNLP -- Natural Language Processing methods for the Brazilian Legal Language We present and make available pre-trained language models (Phraser, Word2Vec, Doc2Vec, FastText, and BERT) for the Brazilian legal language, a Python package with functions to facilitate their use, and a set of demonstrations/tutorials containing some applications involving them. Given that our material is built upon legal texts coming from several Brazilian courts, this initiative is extremely helpful for the Brazilian legal field, which lacks other open and specific tools and language models. Our main objective is to catalyze the use of natural language processing tools for legal texts analysis by the Brazilian industry, government, and academia, providing the necessary tools and accessible material. 9 authors · Oct 5, 2021
- Managing Portfolio for Maximizing Alpha and Minimizing Beta Portfolio management is an essential component of investment strategy that aims to maximize returns while minimizing risk. This paper explores several portfolio management strategies, including asset allocation, diversification, active management, and risk management, and their importance in optimizing portfolio performance. These strategies are examined individually and in combination to demonstrate how they can help investors maximize alpha and minimize beta. Asset allocation is the process of dividing a portfolio among different asset classes to achieve the desired level of risk and return. Diversification involves spreading investments across different securities and sectors to minimize the impact of individual security or sector-specific risks. Active management involves security selection and risk management techniques to generate excess returns while minimizing losses. Risk management strategies, such as stop-loss orders and options strategies, aim to minimize losses in adverse market conditions. The importance of combining these strategies for optimizing portfolio performance is emphasized in this paper. The proper implementation of these strategies can help investors achieve their investment goals over the long-term, while minimizing exposure to risks. A call to action for investors to utilize portfolio management strategies to maximize alpha and minimize beta is also provided. 1 authors · Apr 1, 2023
1 RISC: Generating Realistic Synthetic Bilingual Insurance Contract This paper presents RISC, an open-source Python package data generator (https://github.com/GRAAL-Research/risc). RISC generates look-alike automobile insurance contracts based on the Quebec regulatory insurance form in French and English. Insurance contracts are 90 to 100 pages long and use complex legal and insurance-specific vocabulary for a layperson. Hence, they are a much more complex class of documents than those in traditional NLP corpora. Therefore, we introduce RISCBAC, a Realistic Insurance Synthetic Bilingual Automobile Contract dataset based on the mandatory Quebec car insurance contract. The dataset comprises 10,000 French and English unannotated insurance contracts. RISCBAC enables NLP research for unsupervised automatic summarisation, question answering, text simplification, machine translation and more. Moreover, it can be further automatically annotated as a dataset for supervised tasks such as NER 2 authors · Apr 9, 2023
1 MeetingBank: A Benchmark Dataset for Meeting Summarization As the number of recorded meetings increases, it becomes increasingly important to utilize summarization technology to create useful summaries of these recordings. However, there is a crucial lack of annotated meeting corpora for developing this technology, as it can be hard to collect meetings, especially when the topics discussed are confidential. Furthermore, meeting summaries written by experienced writers are scarce, making it hard for abstractive summarizers to produce sensible output without a reliable reference. This lack of annotated corpora has hindered the development of meeting summarization technology. In this paper, we present MeetingBank, a new benchmark dataset of city council meetings over the past decade. MeetingBank is unique among other meeting corpora due to its divide-and-conquer approach, which involves dividing professionally written meeting minutes into shorter passages and aligning them with specific segments of the meeting. This breaks down the process of summarizing a lengthy meeting into smaller, more manageable tasks. The dataset provides a new testbed of various meeting summarization systems and also allows the public to gain insight into how council decisions are made. We make the collection, including meeting video links, transcripts, reference summaries, agenda, and other metadata, publicly available to facilitate the development of better meeting summarization techniques. Our dataset can be accessed at: https://meetingbank.github.io 6 authors · May 27, 2023
- Improving Information Extraction on Business Documents with Specific Pre-Training Tasks Transformer-based Language Models are widely used in Natural Language Processing related tasks. Thanks to their pre-training, they have been successfully adapted to Information Extraction in business documents. However, most pre-training tasks proposed in the literature for business documents are too generic and not sufficient to learn more complex structures. In this paper, we use LayoutLM, a language model pre-trained on a collection of business documents, and introduce two new pre-training tasks that further improve its capacity to extract relevant information. The first is aimed at better understanding the complex layout of documents, and the second focuses on numeric values and their order of magnitude. These tasks force the model to learn better-contextualized representations of the scanned documents. We further introduce a new post-processing algorithm to decode BIESO tags in Information Extraction that performs better with complex entities. Our method significantly improves extraction performance on both public (from 93.88 to 95.50 F1 score) and private (from 84.35 to 84.84 F1 score) datasets composed of expense receipts, invoices, and purchase orders. 4 authors · Sep 11, 2023
- Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities. 1 authors · Mar 12, 2023
- Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data. 3 authors · Sep 27, 2023