new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation

The integration of Vector Quantised Variational AutoEncoder (VQ-VAE) with autoregressive models as generation part has yielded high-quality results on image generation. However, the autoregressive models will strictly follow the progressive scanning order during the sampling phase. This leads the existing VQ series models to hardly escape the trap of lacking global information. Denoising Diffusion Probabilistic Models (DDPM) in the continuous domain have shown a capability to capture the global context, while generating high-quality images. In the discrete state space, some works have demonstrated the potential to perform text generation and low resolution image generation. We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context, which compensates for the deficiency of the classical autoregressive model along pixel space. Meanwhile, the integration of the discrete VAE with the diffusion model resolves the drawback of conventional autoregressive models being oversized, and the diffusion model which demands excessive time in the sampling process when generating images. It is found that the quality of the generated images is heavily dependent on the discrete visual codebook. Extensive experiments demonstrate that the proposed Vector Quantised Discrete Diffusion Model (VQ-DDM) is able to achieve comparable performance to top-tier methods with low complexity. It also demonstrates outstanding advantages over other vectors quantised with autoregressive models in terms of image inpainting tasks without additional training.

Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE

Given an incomplete image without additional constraint, image inpainting natively allows for multiple solutions as long as they appear plausible. Recently, multiplesolution inpainting methods have been proposed and shown the potential of generating diverse results. However, these methods have difficulty in ensuring the quality of each solution, e.g. they produce distorted structure and/or blurry texture. We propose a two-stage model for diverse inpainting, where the first stage generates multiple coarse results each of which has a different structure, and the second stage refines each coarse result separately by augmenting texture. The proposed model is inspired by the hierarchical vector quantized variational auto-encoder (VQ-VAE), whose hierarchical architecture isentangles structural and textural information. In addition, the vector quantization in VQVAE enables autoregressive modeling of the discrete distribution over the structural information. Sampling from the distribution can easily generate diverse and high-quality structures, making up the first stage of our model. In the second stage, we propose a structural attention module inside the texture generation network, where the module utilizes the structural information to capture distant correlations. We further reuse the VQ-VAE to calculate two feature losses, which help improve structure coherence and texture realism, respectively. Experimental results on CelebA-HQ, Places2, and ImageNet datasets show that our method not only enhances the diversity of the inpainting solutions but also improves the visual quality of the generated multiple images. Code and models are available at: https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting.

Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model

We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.

Vector Quantized Diffusion Model for Text-to-Image Synthesis

We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.

Large Motion Video Autoencoding with Cross-modal Video VAE

Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~https://yzxing87.github.io/vae/{https://yzxing87.github.io/vae/}.

Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders

The posterior collapse phenomenon in variational autoencoder (VAE), where the variational posterior distribution closely matches the prior distribution, can hinder the quality of the learned latent variables. As a consequence of posterior collapse, the latent variables extracted by the encoder in VAE preserve less information from the input data and thus fail to produce meaningful representations as input to the reconstruction process in the decoder. While this phenomenon has been an actively addressed topic related to VAE performance, the theory for posterior collapse remains underdeveloped, especially beyond the standard VAE. In this work, we advance the theoretical understanding of posterior collapse to two important and prevalent yet less studied classes of VAE: conditional VAE and hierarchical VAE. Specifically, via a non-trivial theoretical analysis of linear conditional VAE and hierarchical VAE with two levels of latent, we prove that the cause of posterior collapses in these models includes the correlation between the input and output of the conditional VAE and the effect of learnable encoder variance in the hierarchical VAE. We empirically validate our theoretical findings for linear conditional and hierarchical VAE and demonstrate that these results are also predictive for non-linear cases with extensive experiments.

MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion

The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.

Mogo: RQ Hierarchical Causal Transformer for High-Quality 3D Human Motion Generation

In the field of text-to-motion generation, Bert-type Masked Models (MoMask, MMM) currently produce higher-quality outputs compared to GPT-type autoregressive models (T2M-GPT). However, these Bert-type models often lack the streaming output capability required for applications in video game and multimedia environments, a feature inherent to GPT-type models. Additionally, they demonstrate weaker performance in out-of-distribution generation. To surpass the quality of BERT-type models while leveraging a GPT-type structure, without adding extra refinement models that complicate scaling data, we propose a novel architecture, Mogo (Motion Only Generate Once), which generates high-quality lifelike 3D human motions by training a single transformer model. Mogo consists of only two main components: 1) RVQ-VAE, a hierarchical residual vector quantization variational autoencoder, which discretizes continuous motion sequences with high precision; 2) Hierarchical Causal Transformer, responsible for generating the base motion sequences in an autoregressive manner while simultaneously inferring residuals across different layers. Experimental results demonstrate that Mogo can generate continuous and cyclic motion sequences up to 260 frames (13 seconds), surpassing the 196 frames (10 seconds) length limitation of existing datasets like HumanML3D. On the HumanML3D test set, Mogo achieves a FID score of 0.079, outperforming both the GPT-type model T2M-GPT (FID = 0.116), AttT2M (FID = 0.112) and the BERT-type model MMM (FID = 0.080). Furthermore, our model achieves the best quantitative performance in out-of-distribution generation.

CV-VAE: A Compatible Video VAE for Latent Generative Video Models

Spatio-temporal compression of videos, utilizing networks such as Variational Autoencoders (VAE), plays a crucial role in OpenAI's SORA and numerous other video generative models. For instance, many LLM-like video models learn the distribution of discrete tokens derived from 3D VAEs within the VQVAE framework, while most diffusion-based video models capture the distribution of continuous latent extracted by 2D VAEs without quantization. The temporal compression is simply realized by uniform frame sampling which results in unsmooth motion between consecutive frames. Currently, there lacks of a commonly used continuous video (3D) VAE for latent diffusion-based video models in the research community. Moreover, since current diffusion-based approaches are often implemented using pre-trained text-to-image (T2I) models, directly training a video VAE without considering the compatibility with existing T2I models will result in a latent space gap between them, which will take huge computational resources for training to bridge the gap even with the T2I models as initialization. To address this issue, we propose a method for training a video VAE of latent video models, namely CV-VAE, whose latent space is compatible with that of a given image VAE, e.g., image VAE of Stable Diffusion (SD). The compatibility is achieved by the proposed novel latent space regularization, which involves formulating a regularization loss using the image VAE. Benefiting from the latent space compatibility, video models can be trained seamlessly from pre-trained T2I or video models in a truly spatio-temporally compressed latent space, rather than simply sampling video frames at equal intervals. With our CV-VAE, existing video models can generate four times more frames with minimal finetuning. Extensive experiments are conducted to demonstrate the effectiveness of the proposed video VAE.

Reduce Information Loss in Transformers for Pluralistic Image Inpainting

Transformers have achieved great success in pluralistic image inpainting recently. However, we find existing transformer based solutions regard each pixel as a token, thus suffer from information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration, incurring information loss and extra misalignment for the boundaries of masked regions. 2) They quantize 256^3 RGB pixels to a small number (such as 512) of quantized pixels. The indices of quantized pixels are used as tokens for the inputs and prediction targets of transformer. Although an extra CNN network is used to upsample and refine the low-resolution results, it is difficult to retrieve the lost information back.To keep input information as much as possible, we propose a new transformer based framework "PUT". Specifically, to avoid input downsampling while maintaining the computation efficiency, we design a patch-based auto-encoder P-VQVAE, where the encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by quantization, an Un-Quantized Transformer (UQ-Transformer) is applied, which directly takes the features from P-VQVAE encoder as input without quantization and regards the quantized tokens only as prediction targets. Extensive experiments show that PUT greatly outperforms state-of-the-art methods on image fidelity, especially for large masked regions and complex large-scale datasets. Code is available at https://github.com/liuqk3/PUT

Oscillation-free Quantization for Low-bit Vision Transformers

Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.

Addressing Representation Collapse in Vector Quantized Models with One Linear Layer

Vector Quantization (VQ) is a widely used method for converting continuous representations into discrete codes, which has become fundamental in unsupervised representation learning and latent generative models. However, VQ models are often hindered by the problem of representation collapse in the latent space, which leads to low codebook utilization and limits the scalability of the codebook for large-scale training. Existing methods designed to mitigate representation collapse typically reduce the dimensionality of latent space at the expense of model capacity, which do not fully resolve the core issue. In this study, we conduct a theoretical analysis of representation collapse in VQ models and identify its primary cause as the disjoint optimization of the codebook, where only a small subset of code vectors are updated through gradient descent. To address this issue, we propose SimVQ, a novel method which reparameterizes the code vectors through a linear transformation layer based on a learnable latent basis. This transformation optimizes the entire linear space spanned by the codebook, rather than merely updating the code vector selected by the nearest-neighbor search in vanilla VQ models. Although it is commonly understood that the multiplication of two linear matrices is equivalent to applying a single linear layer, our approach works surprisingly well in resolving the collapse issue in VQ models with just one linear layer. We validate the efficacy of SimVQ through extensive experiments across various modalities, including image and audio data with different model architectures. Our code is available at https://github.com/youngsheen/SimVQ.

ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation

Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.

OD-VAE: An Omni-dimensional Video Compressor for Improving Latent Video Diffusion Model

Variational Autoencoder (VAE), compressing videos into latent representations, is a crucial preceding component of Latent Video Diffusion Models (LVDMs). With the same reconstruction quality, the more sufficient the VAE's compression for videos is, the more efficient the LVDMs are. However, most LVDMs utilize 2D image VAE, whose compression for videos is only in the spatial dimension and often ignored in the temporal dimension. How to conduct temporal compression for videos in a VAE to obtain more concise latent representations while promising accurate reconstruction is seldom explored. To fill this gap, we propose an omni-dimension compression VAE, named OD-VAE, which can temporally and spatially compress videos. Although OD-VAE's more sufficient compression brings a great challenge to video reconstruction, it can still achieve high reconstructed accuracy by our fine design. To obtain a better trade-off between video reconstruction quality and compression speed, four variants of OD-VAE are introduced and analyzed. In addition, a novel tail initialization is designed to train OD-VAE more efficiently, and a novel inference strategy is proposed to enable OD-VAE to handle videos of arbitrary length with limited GPU memory. Comprehensive experiments on video reconstruction and LVDM-based video generation demonstrate the effectiveness and efficiency of our proposed methods.

DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents

Diffusion probabilistic models have been shown to generate state-of-the-art results on several competitive image synthesis benchmarks but lack a low-dimensional, interpretable latent space, and are slow at generation. On the other hand, standard Variational Autoencoders (VAEs) typically have access to a low-dimensional latent space but exhibit poor sample quality. We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework, and leverage this to design novel conditional parameterizations for diffusion models. We show that the resulting model equips diffusion models with a low-dimensional VAE inferred latent code which can be used for downstream tasks like controllable synthesis. The proposed method also improves upon the speed vs quality tradeoff exhibited in standard unconditional DDPM/DDIM models (for instance, FID of 16.47 vs 34.36 using a standard DDIM on the CelebA-HQ-128 benchmark using T=10 reverse process steps) without having explicitly trained for such an objective. Furthermore, the proposed model exhibits synthesis quality comparable to state-of-the-art models on standard image synthesis benchmarks like CIFAR-10 and CelebA-64 while outperforming most existing VAE-based methods. Lastly, we show that the proposed method exhibits inherent generalization to different types of noise in the conditioning signal. For reproducibility, our source code is publicly available at https://github.com/kpandey008/DiffuseVAE.

HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision

Model size and inference speed/power have become a major challenge in the deployment of Neural Networks for many applications. A promising approach to address these problems is quantization. However, uniformly quantizing a model to ultra low precision leads to significant accuracy degradation. A novel solution for this is to use mixed-precision quantization, as some parts of the network may allow lower precision as compared to other layers. However, there is no systematic way to determine the precision of different layers. A brute force approach is not feasible for deep networks, as the search space for mixed-precision is exponential in the number of layers. Another challenge is a similar factorial complexity for determining block-wise fine-tuning order when quantizing the model to a target precision. Here, we introduce Hessian AWare Quantization (HAWQ), a novel second-order quantization method to address these problems. HAWQ allows for the automatic selection of the relative quantization precision of each layer, based on the layer's Hessian spectrum. Moreover, HAWQ provides a deterministic fine-tuning order for quantizing layers, based on second-order information. We show the results of our method on Cifar-10 using ResNet20, and on ImageNet using Inception-V3, ResNet50 and SqueezeNext models. Comparing HAWQ with state-of-the-art shows that we can achieve similar/better accuracy with 8times activation compression ratio on ResNet20, as compared to DNAS~wu2018mixed, and up to 1% higher accuracy with up to 14% smaller models on ResNet50 and Inception-V3, compared to recently proposed methods of RVQuant~park2018value and HAQ~wang2018haq. Furthermore, we show that we can quantize SqueezeNext to just 1MB model size while achieving above 68% top1 accuracy on ImageNet.

Efficient Generative Modeling with Residual Vector Quantization-Based Tokens

We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io

APQ: Joint Search for Network Architecture, Pruning and Quantization Policy

We present APQ for efficient deep learning inference on resource-constrained hardware. Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner. To deal with the larger design space it brings, a promising approach is to train a quantization-aware accuracy predictor to quickly get the accuracy of the quantized model and feed it to the search engine to select the best fit. However, training this quantization-aware accuracy predictor requires collecting a large number of quantized <model, accuracy> pairs, which involves quantization-aware finetuning and thus is highly time-consuming. To tackle this challenge, we propose to transfer the knowledge from a full-precision (i.e., fp32) accuracy predictor to the quantization-aware (i.e., int8) accuracy predictor, which greatly improves the sample efficiency. Besides, collecting the dataset for the fp32 accuracy predictor only requires to evaluate neural networks without any training cost by sampling from a pretrained once-for-all network, which is highly efficient. Extensive experiments on ImageNet demonstrate the benefits of our joint optimization approach. With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ. Compared to the separate optimization approach (ProxylessNAS+AMC+HAQ), APQ achieves 2.3% higher ImageNet accuracy while reducing orders of magnitude GPU hours and CO2 emission, pushing the frontier for green AI that is environmental-friendly. The code and video are publicly available.

RepQ-ViT: Scale Reparameterization for Post-Training Quantization of Vision Transformers

Post-training quantization (PTQ), which only requires a tiny dataset for calibration without end-to-end retraining, is a light and practical model compression technique. Recently, several PTQ schemes for vision transformers (ViTs) have been presented; unfortunately, they typically suffer from non-trivial accuracy degradation, especially in low-bit cases. In this paper, we propose RepQ-ViT, a novel PTQ framework for ViTs based on quantization scale reparameterization, to address the above issues. RepQ-ViT decouples the quantization and inference processes, where the former employs complex quantizers and the latter employs scale-reparameterized simplified quantizers. This ensures both accurate quantization and efficient inference, which distinguishes it from existing approaches that sacrifice quantization performance to meet the target hardware. More specifically, we focus on two components with extreme distributions: post-LayerNorm activations with severe inter-channel variation and post-Softmax activations with power-law features, and initially apply channel-wise quantization and log2 quantization, respectively. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference, with only slight accuracy or computational costs. Extensive experiments are conducted on multiple vision tasks with different model variants, proving that RepQ-ViT, without hyperparameters and expensive reconstruction procedures, can outperform existing strong baselines and encouragingly improve the accuracy of 4-bit PTQ of ViTs to a usable level. Code is available at https://github.com/zkkli/RepQ-ViT.

QuantNAS for super resolution: searching for efficient quantization-friendly architectures against quantization noise

There is a constant need for high-performing and computationally efficient neural network models for image super-resolution: computationally efficient models can be used via low-capacity devices and reduce carbon footprints. One way to obtain such models is to compress models, e.g. quantization. Another way is a neural architecture search that automatically discovers new, more efficient solutions. We propose a novel quantization-aware procedure, the QuantNAS that combines pros of these two approaches. To make QuantNAS work, the procedure looks for quantization-friendly super-resolution models. The approach utilizes entropy regularization, quantization noise, and Adaptive Deviation for Quantization (ADQ) module to enhance the search procedure. The entropy regularization technique prioritizes a single operation within each block of the search space. Adding quantization noise to parameters and activations approximates model degradation after quantization, resulting in a more quantization-friendly architectures. ADQ helps to alleviate problems caused by Batch Norm blocks in super-resolution models. Our experimental results show that the proposed approximations are better for search procedure than direct model quantization. QuantNAS discovers architectures with better PSNR/BitOps trade-off than uniform or mixed precision quantization of fixed architectures. We showcase the effectiveness of our method through its application to two search spaces inspired by the state-of-the-art SR models and RFDN. Thus, anyone can design a proper search space based on an existing architecture and apply our method to obtain better quality and efficiency. The proposed procedure is 30\% faster than direct weight quantization and is more stable.

RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization

Large transformer models have demonstrated remarkable success. Post-training quantization (PTQ), which requires only a small dataset for calibration and avoids end-to-end retraining, is a promising solution for compressing these large models. Regrettably, existing PTQ methods typically exhibit non-trivial performance loss. We find that the performance bottleneck stems from over-consideration of hardware compatibility in the quantization process, compelling them to reluctantly employ simple quantizers, albeit at the expense of accuracy. With the above insights, we propose RepQuant, a novel PTQ framework with quantization-inference decoupling paradigm to address the above issues. RepQuant employs complex quantizers in the quantization process and simplified quantizers in the inference process, and performs mathematically equivalent transformations between the two through quantization scale reparameterization, thus ensuring both accurate quantization and efficient inference. More specifically, we focus on two components with extreme distributions: LayerNorm activations and Softmax activations. Initially, we apply channel-wise quantization and log2 quantization, respectively, which are tailored to their distributions. In particular, for the former, we introduce a learnable per-channel dual clipping scheme, which is designed to efficiently identify outliers in the unbalanced activations with fine granularity. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference. Moreover, quantized weight reconstruction is seamlessly integrated into the above procedure to further push the performance limits. Extensive experiments are performed on different large-scale transformer variants on multiple tasks, including vision, language, and multi-modal transformers, and RepQuant encouragingly demonstrates significant performance advantages.

HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks

Quantization is an effective method for reducing memory footprint and inference time of Neural Networks, e.g., for efficient inference in the cloud, especially at the edge. However, ultra low precision quantization could lead to significant degradation in model generalization. A promising method to address this is to perform mixed-precision quantization, where more sensitive layers are kept at higher precision. However, the search space for a mixed-precision quantization is exponential in the number of layers. Recent work has proposed HAWQ, a novel Hessian based framework, with the aim of reducing this exponential search space by using second-order information. While promising, this prior work has three major limitations: (i) HAWQV1 only uses the top Hessian eigenvalue as a measure of sensitivity and do not consider the rest of the Hessian spectrum; (ii) HAWQV1 approach only provides relative sensitivity of different layers and therefore requires a manual selection of the mixed-precision setting; and (iii) HAWQV1 does not consider mixed-precision activation quantization. Here, we present HAWQV2 which addresses these shortcomings. For (i), we perform a theoretical analysis showing that a better sensitivity metric is to compute the average of all of the Hessian eigenvalues. For (ii), we develop a Pareto frontier based method for selecting the exact bit precision of different layers without any manual selection. For (iii), we extend the Hessian analysis to mixed-precision activation quantization. We have found this to be very beneficial for object detection. We show that HAWQV2 achieves new state-of-the-art results for a wide range of tasks.

LTX-Video: Realtime Video Latent Diffusion

We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.

RSQ: Learning from Important Tokens Leads to Better Quantized LLMs

Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining. Previous methods typically quantize the weights of each layer by "uniformly" optimizing the layer reconstruction loss across all output tokens. However, in this paper, we demonstrate that better-quantized models can be obtained by prioritizing learning from important tokens (e.g. which have large attention scores). Building on this finding, we propose RSQ (Rotate, Scale, then Quantize), which (1) applies rotations (orthogonal transformation) to the model to mitigate outliers (those with exceptionally large magnitude), (2) scales the token feature based on its importance, and (3) quantizes the model using the GPTQ framework with the second-order statistics computed by scaled tokens. To compute token importance, we explore both heuristic and dynamic strategies. Based on a thorough analysis of all approaches, we adopt attention concentration, which uses attention scores of each token as its importance, as the best approach. We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families: LLaMA3, Mistral, and Qwen2.5. Additionally, models quantized with RSQ achieve superior performance on long-context tasks, further highlighting its effectiveness. Lastly, RSQ demonstrates generalizability across various setups, including different model sizes, calibration datasets, bit precisions, and quantization methods.

On the Road to Clarity: Exploring Explainable AI for World Models in a Driver Assistance System

In Autonomous Driving (AD) transparency and safety are paramount, as mistakes are costly. However, neural networks used in AD systems are generally considered black boxes. As a countermeasure, we have methods of explainable AI (XAI), such as feature relevance estimation and dimensionality reduction. Coarse graining techniques can also help reduce dimensionality and find interpretable global patterns. A specific coarse graining method is Renormalization Groups from statistical physics. It has previously been applied to Restricted Boltzmann Machines (RBMs) to interpret unsupervised learning. We refine this technique by building a transparent backbone model for convolutional variational autoencoders (VAE) that allows mapping latent values to input features and has performance comparable to trained black box VAEs. Moreover, we propose a custom feature map visualization technique to analyze the internal convolutional layers in the VAE to explain internal causes of poor reconstruction that may lead to dangerous traffic scenarios in AD applications. In a second key contribution, we propose explanation and evaluation techniques for the internal dynamics and feature relevance of prediction networks. We test a long short-term memory (LSTM) network in the computer vision domain to evaluate the predictability and in future applications potentially safety of prediction models. We showcase our methods by analyzing a VAE-LSTM world model that predicts pedestrian perception in an urban traffic situation.

VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models

Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit. Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce Vector Post-Training Quantization (VPTQ) for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization. We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ. In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model. Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8times increase in inference throughput compared to SOTA.

Factorized Visual Tokenization and Generation

Visual tokenizers are fundamental to image generation. They convert visual data into discrete tokens, enabling transformer-based models to excel at image generation. Despite their success, VQ-based tokenizers like VQGAN face significant limitations due to constrained vocabulary sizes. Simply expanding the codebook often leads to training instability and diminishing performance gains, making scalability a critical challenge. In this work, we introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks. This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization. To ensure each sub-codebook captures distinct and complementary information, we propose a disentanglement regularization that explicitly reduces redundancy, promoting diversity across the sub-codebooks. Furthermore, we integrate representation learning into the training process, leveraging pretrained vision models like CLIP and DINO to infuse semantic richness into the learned representations. This design ensures our tokenizer captures diverse semantic levels, leading to more expressive and disentangled representations. Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance. We further demonstrate that this tokenizer can be effectively adapted into auto-regressive image generation. https://showlab.github.io/FQGAN

VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations

Recent advancements in implicit neural representations have contributed to high-fidelity surface reconstruction and photorealistic novel view synthesis. However, the computational complexity inherent in these methodologies presents a substantial impediment, constraining the attainable frame rates and resolutions in practical applications. In response to this predicament, we propose VQ-NeRF, an effective and efficient pipeline for enhancing implicit neural representations via vector quantization. The essence of our method involves reducing the sampling space of NeRF to a lower resolution and subsequently reinstating it to the original size utilizing a pre-trained VAE decoder, thereby effectively mitigating the sampling time bottleneck encountered during rendering. Although the codebook furnishes representative features, reconstructing fine texture details of the scene remains challenging due to high compression rates. To overcome this constraint, we design an innovative multi-scale NeRF sampling scheme that concurrently optimizes the NeRF model at both compressed and original scales to enhance the network's ability to preserve fine details. Furthermore, we incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions. Extensive experiments demonstrate the effectiveness of our model in achieving the optimal trade-off between rendering quality and efficiency. Evaluation on the DTU, BlendMVS, and H3DS datasets confirms the superior performance of our approach.

Q-VLM: Post-training Quantization for Large Vision-Language Models

In this paper, we propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference. Conventional quantization methods sequentially search the layer-wise rounding functions by minimizing activation discretization errors, which fails to acquire optimal quantization strategy without considering cross-layer dependency. On the contrary, we mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy searching with low search cost. Specifically, we observe the strong correlation between the activation entropy and the cross-layer dependency concerning output discretization errors. Therefore, we employ the entropy as the proxy to partition blocks optimally, which aims to achieve satisfying trade-offs between discretization errors and the search cost. Moreover, we optimize the visual encoder to disentangle the cross-layer dependency for fine-grained decomposition of search space, so that the search cost is further reduced without harming the quantization accuracy. Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multi-modal reasoning tasks. Code is available at https://github.com/ChangyuanWang17/QVLM.

Enhancing a Convolutional Autoencoder with a Quantum Approximate Optimization Algorithm for Image Noise Reduction

Image denoising is essential for removing noise in images caused by electric device malfunctions or other factors during image acquisition. It helps preserve image quality and interpretation. Many convolutional autoencoder algorithms have proven effective in image denoising. Owing to their promising efficiency, quantum computers have gained popularity. This study introduces a quantum convolutional autoencoder (QCAE) method for improved image denoising. This method was developed by substituting the representative latent space of the autoencoder with a quantum circuit. To enhance efficiency, we leveraged the advantages of the quantum approximate optimization algorithm (QAOA)-incorporated parameter-shift rule to identify an optimized cost function, facilitating effective learning from data and gradient computation on an actual quantum computer. The proposed QCAE method outperformed its classical counterpart as it exhibited lower training loss and a higher structural similarity index (SSIM) value. QCAE also outperformed its classical counterpart in denoising the MNIST dataset by up to 40% in terms of SSIM value, confirming its enhanced capabilities in real-world applications. Evaluation of QAOA performance across different circuit configurations and layer variations showed that our technique outperformed other circuit designs by 25% on average.

Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models

Latent diffusion models with Transformer architectures excel at generating high-fidelity images. However, recent studies reveal an optimization dilemma in this two-stage design: while increasing the per-token feature dimension in visual tokenizers improves reconstruction quality, it requires substantially larger diffusion models and more training iterations to achieve comparable generation performance. Consequently, existing systems often settle for sub-optimal solutions, either producing visual artifacts due to information loss within tokenizers or failing to converge fully due to expensive computation costs. We argue that this dilemma stems from the inherent difficulty in learning unconstrained high-dimensional latent spaces. To address this, we propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers. Our proposed VA-VAE (Vision foundation model Aligned Variational AutoEncoder) significantly expands the reconstruction-generation frontier of latent diffusion models, enabling faster convergence of Diffusion Transformers (DiT) in high-dimensional latent spaces. To exploit the full potential of VA-VAE, we build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT. The integrated system achieves state-of-the-art (SOTA) performance on ImageNet 256x256 generation with an FID score of 1.35 while demonstrating remarkable training efficiency by reaching an FID score of 2.11 in just 64 epochs--representing an over 21 times convergence speedup compared to the original DiT. Models and codes are available at: https://github.com/hustvl/LightningDiT.

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.

Scaling the Codebook Size of VQGAN to 100,000 with a Utilization Rate of 99%

In the realm of image quantization exemplified by VQGAN, the process encodes images into discrete tokens drawn from a codebook with a predefined size. Recent advancements, particularly with LLAMA 3, reveal that enlarging the codebook significantly enhances model performance. However, VQGAN and its derivatives, such as VQGAN-FC (Factorized Codes) and VQGAN-EMA, continue to grapple with challenges related to expanding the codebook size and enhancing codebook utilization. For instance, VQGAN-FC is restricted to learning a codebook with a maximum size of 16,384, maintaining a typically low utilization rate of less than 12% on ImageNet. In this work, we propose a novel image quantization model named VQGAN-LC (Large Codebook), which extends the codebook size to 100,000, achieving an utilization rate exceeding 99%. Unlike previous methods that optimize each codebook entry, our approach begins with a codebook initialized with 100,000 features extracted by a pre-trained vision encoder. Optimization then focuses on training a projector that aligns the entire codebook with the feature distributions of the encoder in VQGAN-LC. We demonstrate the superior performance of our model over its counterparts across a variety of tasks, including image reconstruction, image classification, auto-regressive image generation using GPT, and image creation with diffusion- and flow-based generative models. Code and models are available at https://github.com/zh460045050/VQGAN-LC.

Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers

Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.

QuEST: Stable Training of LLMs with 1-Bit Weights and Activations

One approach to reducing the massive costs of large language models (LLMs) is the use of quantized or sparse representations for training or deployment. While post-training compression methods are very popular, the question of obtaining even more accurate compressed models by directly training over such representations, i.e., Quantization-Aware Training (QAT), is still open: for example, a recent study (arXiv:2411.04330v2) put the "optimal" bit-width at which models can be trained using QAT, while staying accuracy-competitive with standard FP16/BF16 precision, at 8-bits weights and activations. We advance this state-of-the-art via a new method called QuEST, which is Pareto-competitive with FP16, i.e., it provides better accuracy at lower model size, while training models with weights and activations in 4-bits or less. Moreover, QuEST allows stable training with 1-bit weights and activations. QuEST achieves this by improving two key aspects of QAT methods: (1) accurate and fast quantization of the (continuous) distributions of weights and activations via Hadamard normalization and MSE-optimal fitting; (2) a new trust gradient estimator based on the idea of explicitly minimizing the error between the noisy gradient computed over quantized states and the "true" (but unknown) full-precision gradient. Experiments on Llama-type architectures show that QuEST induces stable scaling laws across the entire range of hardware-supported precisions, and can be extended to sparse representations. We provide GPU kernel support showing that models produced by QuEST can be executed efficiently. Our code is available at https://github.com/IST-DASLab/QuEST.

3D representation in 512-Byte:Variational tokenizer is the key for autoregressive 3D generation

Autoregressive transformers have revolutionized high-fidelity image generation. One crucial ingredient lies in the tokenizer, which compresses high-resolution image patches into manageable discrete tokens with a scanning or hierarchical order suitable for large language models. Extending these tokenizers to 3D generation, however, presents a significant challenge: unlike image patches that naturally exhibit spatial sequence and multi-scale relationships, 3D data lacks an inherent order, making it difficult to compress into fewer tokens while preserving structural details. To address this, we introduce the Variational Tokenizer (VAT), which transforms unordered 3D data into compact latent tokens with an implicit hierarchy, suited for efficient and high-fidelity coarse-to-fine autoregressive modeling. VAT begins with an in-context transformer, which compress numerous unordered 3D features into a reduced token set with minimal information loss. This latent space is then mapped to a Gaussian distribution for residual quantization, with token counts progressively increasing across scales. In this way, tokens at different scales naturally establish the interconnections by allocating themselves into different subspaces within the same Gaussian distribution, facilitating discrete modeling of token relationships across scales. During the decoding phase, a high-resolution triplane is utilized to convert these compact latent tokens into detailed 3D shapes. Extensive experiments demonstrate that VAT enables scalable and efficient 3D generation, outperforming existing methods in quality, efficiency, and generalization. Remarkably, VAT achieves up to a 250x compression, reducing a 1MB mesh to just 3.9KB with a 96% F-score, and can further compress to 256 int8 tokens, achieving a 2000x reduction while maintaining a 92% F-score.

The Nature of Mathematical Modeling and Probabilistic Optimization Engineering in Generative AI

In this paper, we give an in-depth analysis on the mathematical problem formulations and the probabilistic optimization explorations for some of the key components in Transformer model [33] in the field of generative AI. We explore and discuss some potential further enhancement for current state of the art methods for some key underlying technologies of generative AI models from algorithmic and probabilistic optimization perspective. In particular, we present an optimal solution for sub-word encoding (SWE) based on similar initial settings as that of byte-pair encoding (BPE) algorithm in [9] with similar objectives as that of WordPiece approach in [28, 31] to maximize the likelihood of the training data. We also present cross entropy optimization method to optimize hyperparameters for word2vec model [17]. In addition, we propose a factored combination of rotary positional encoding (RoPE) [32] and attention with linear biases (ALiBi) [23] with a harmonic series. We also present a probabilistic FlashAttention [6, 7] (PrFlashAttention) method with a probability distribution over block distances in the matrix to decide which block is likely to participate in a given round of attention computation while maintaining the lower triangle shape of the tensor for autoregressive language models by re-shaping the tensors. Finally, we present staircase adaptive quantization (SAQ) of key-value (KV) cache for multi-query attention (MQA) based on the framework presented in [16] to have gradual quantization degradation while achieving reasonable model quality and cost savings.

HiCMAE: Hierarchical Contrastive Masked Autoencoder for Self-Supervised Audio-Visual Emotion Recognition

Audio-Visual Emotion Recognition (AVER) has garnered increasing attention in recent years for its critical role in creating emotion-ware intelligent machines. Previous efforts in this area are dominated by the supervised learning paradigm. Despite significant progress, supervised learning is meeting its bottleneck due to the longstanding data scarcity issue in AVER. Motivated by recent advances in self-supervised learning, we propose Hierarchical Contrastive Masked Autoencoder (HiCMAE), a novel self-supervised framework that leverages large-scale self-supervised pre-training on vast unlabeled audio-visual data to promote the advancement of AVER. Following prior arts in self-supervised audio-visual representation learning, HiCMAE adopts two primary forms of self-supervision for pre-training, namely masked data modeling and contrastive learning. Unlike them which focus exclusively on top-layer representations while neglecting explicit guidance of intermediate layers, HiCMAE develops a three-pronged strategy to foster hierarchical audio-visual feature learning and improve the overall quality of learned representations. To verify the effectiveness of HiCMAE, we conduct extensive experiments on 9 datasets covering both categorical and dimensional AVER tasks. Experimental results show that our method significantly outperforms state-of-the-art supervised and self-supervised audio-visual methods, which indicates that HiCMAE is a powerful audio-visual emotion representation learner. Codes and models will be publicly available at https://github.com/sunlicai/HiCMAE.

DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers

Vision transformers (ViTs) have garnered significant attention for their performance in vision tasks, but the high computational cost and significant latency issues have hindered widespread adoption. Post-training quantization (PTQ), a promising method for model compression, still faces accuracy degradation challenges with ViTs. There are two reasons for this: the existing quantization paradigm does not fit the power-law distribution of post-Softmax activations well, and accuracy inevitably decreases after reparameterizing post-LayerNorm activations. We propose a Distribution-Friendly and Outlier-Aware Post-training Quantization method for Vision Transformers, named DopQ-ViT. DopQ-ViT analyzes the inefficiencies of current quantizers and introduces a distribution-friendly Tan Quantizer called TanQ. TanQ focuses more on values near 1, more accurately preserving the power-law distribution of post-Softmax activations, and achieves favorable results. Besides, during the reparameterization of post-LayerNorm activations from channel-wise to layer-wise quantization, the accuracy degradation is mainly due to the significant impact of outliers in the scaling factors. Therefore, DopQ-ViT proposes a method to select Median as the Optimal Scaling Factor, denoted as MOSF, which compensates for the influence of outliers and preserves the performance of the quantization model. DopQ-ViT has been extensively validated and significantly improves the performance of quantization models, especially in low-bit settings.

Learning Data-Driven Vector-Quantized Degradation Model for Animation Video Super-Resolution

Existing real-world video super-resolution (VSR) methods focus on designing a general degradation pipeline for open-domain videos while ignoring data intrinsic characteristics which strongly limit their performance when applying to some specific domains (e.g. animation videos). In this paper, we thoroughly explore the characteristics of animation videos and leverage the rich priors in real-world animation data for a more practical animation VSR model. In particular, we propose a multi-scale Vector-Quantized Degradation model for animation video Super-Resolution (VQD-SR) to decompose the local details from global structures and transfer the degradation priors in real-world animation videos to a learned vector-quantized codebook for degradation modeling. A rich-content Real Animation Low-quality (RAL) video dataset is collected for extracting the priors. We further propose a data enhancement strategy for high-resolution (HR) training videos based on our observation that existing HR videos are mostly collected from the Web which contains conspicuous compression artifacts. The proposed strategy is valid to lift the upper bound of animation VSR performance, regardless of the specific VSR model. Experimental results demonstrate the superiority of the proposed VQD-SR over state-of-the-art methods, through extensive quantitative and qualitative evaluations of the latest animation video super-resolution benchmark.

Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs

Generating realistic time series data is important for many engineering and scientific applications. Existing work tackles this problem using generative adversarial networks (GANs). However, GANs are often unstable during training, and they can suffer from mode collapse. While variational autoencoders (VAEs) are known to be more robust to these issues, they are (surprisingly) less often considered for time series generation. In this work, we introduce Koopman VAE (KVAE), a new generative framework that is based on a novel design for the model prior, and that can be optimized for either regular and irregular training data. Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map. Our approach enhances generative modeling with two desired features: (i) incorporating domain knowledge can be achieved by leverageing spectral tools that prescribe constraints on the eigenvalues of the linear map; and (ii) studying the qualitative behavior and stablity of the system can be performed using tools from dynamical systems theory. Our results show that KVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks. Whether trained on regular or irregular data, KVAE generates time series that improve both discriminative and predictive metrics. We also present visual evidence suggesting that KVAE learns probability density functions that better approximate empirical ground truth distributions.

A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.

Recursive Generalization Transformer for Image Super-Resolution

Transformer architectures have exhibited remarkable performance in image super-resolution (SR). Since the quadratic computational complexity of the self-attention (SA) in Transformer, existing methods tend to adopt SA in a local region to reduce overheads. However, the local design restricts the global context exploitation, which is crucial for accurate image reconstruction. In this work, we propose the Recursive Generalization Transformer (RGT) for image SR, which can capture global spatial information and is suitable for high-resolution images. Specifically, we propose the recursive-generalization self-attention (RG-SA). It recursively aggregates input features into representative feature maps, and then utilizes cross-attention to extract global information. Meanwhile, the channel dimensions of attention matrices (query, key, and value) are further scaled to mitigate the redundancy in the channel domain. Furthermore, we combine the RG-SA with local self-attention to enhance the exploitation of the global context, and propose the hybrid adaptive integration (HAI) for module integration. The HAI allows the direct and effective fusion between features at different levels (local or global). Extensive experiments demonstrate that our RGT outperforms recent state-of-the-art methods quantitatively and qualitatively. Code and pre-trained models are available at https://github.com/zhengchen1999/RGT.

Learning Low-Rank Representations for Model Compression

Vector Quantization (VQ) is an appealing model compression method to obtain a tiny model with less accuracy loss. While methods to obtain better codebooks and codes under fixed clustering dimensionality have been extensively studied, optimizations of the vectors in favour of clustering performance are not carefully considered, especially via the reduction of vector dimensionality. This paper reports our recent progress on the combination of dimensionality compression and vector quantization, proposing a Low-Rank Representation Vector Quantization (LR^2VQ) method that outperforms previous VQ algorithms in various tasks and architectures. LR^2VQ joins low-rank representation with subvector clustering to construct a new kind of building block that is directly optimized through end-to-end training over the task loss. Our proposed design pattern introduces three hyper-parameters, the number of clusters k, the size of subvectors m and the clustering dimensionality d. In our method, the compression ratio could be directly controlled by m, and the final accuracy is solely determined by d. We recognize d as a trade-off between low-rank approximation error and clustering error and carry out both theoretical analysis and experimental observations that empower the estimation of the proper d before fine-tunning. With a proper d, we evaluate LR^2VQ with ResNet-18/ResNet-50 on ImageNet classification datasets, achieving 2.8\%/1.0\% top-1 accuracy improvements over the current state-of-the-art VQ-based compression algorithms with 43times/31times compression factor.

FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching

Autoregressive (AR) modeling has achieved remarkable success in natural language processing by enabling models to generate text with coherence and contextual understanding through next token prediction. Recently, in image generation, VAR proposes scale-wise autoregressive modeling, which extends the next token prediction to the next scale prediction, preserving the 2D structure of images. However, VAR encounters two primary challenges: (1) its complex and rigid scale design limits generalization in next scale prediction, and (2) the generator's dependence on a discrete tokenizer with the same complex scale structure restricts modularity and flexibility in updating the tokenizer. To address these limitations, we introduce FlowAR, a general next scale prediction method featuring a streamlined scale design, where each subsequent scale is simply double the previous one. This eliminates the need for VAR's intricate multi-scale residual tokenizer and enables the use of any off-the-shelf Variational AutoEncoder (VAE). Our simplified design enhances generalization in next scale prediction and facilitates the integration of Flow Matching for high-quality image synthesis. We validate the effectiveness of FlowAR on the challenging ImageNet-256 benchmark, demonstrating superior generation performance compared to previous methods. Codes will be available at https://github.com/OliverRensu/FlowAR.

DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations

Recent studies have introduced a new class of generative models for synthesizing implicit neural representations (INRs) that capture arbitrary continuous signals in various domains. These models opened the door for domain-agnostic generative models, but they often fail to achieve high-quality generation. We observed that the existing methods generate the weights of neural networks to parameterize INRs and evaluate the network with fixed positional embeddings (PEs). Arguably, this architecture limits the expressive power of generative models and results in low-quality INR generation. To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights. Specifically, we develop a Discrete-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions in the shared latent space. Additionally, we introduce a novel conditioning mechanism for evaluating INRs with the hierarchically decomposed PEs to further enhance expressive power. Extensive experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI and its superior performance compared to the existing INR generative models.

NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers

The complicated architecture and high training cost of vision transformers urge the exploration of post-training quantization. However, the heavy-tailed distribution of vision transformer activations hinders the effectiveness of previous post-training quantization methods, even with advanced quantizer designs. Instead of tuning the quantizer to better fit the complicated activation distribution, this paper proposes NoisyQuant, a quantizer-agnostic enhancement for the post-training activation quantization performance of vision transformers. We make a surprising theoretical discovery that for a given quantizer, adding a fixed Uniform noisy bias to the values being quantized can significantly reduce the quantization error under provable conditions. Building on the theoretical insight, NoisyQuant achieves the first success on actively altering the heavy-tailed activation distribution with additive noisy bias to fit a given quantizer. Extensive experiments show NoisyQuant largely improves the post-training quantization performance of vision transformer with minimal computation overhead. For instance, on linear uniform 6-bit activation quantization, NoisyQuant improves SOTA top-1 accuracy on ImageNet by up to 1.7%, 1.1% and 0.5% for ViT, DeiT, and Swin Transformer respectively, achieving on-par or even higher performance than previous nonlinear, mixed-precision quantization.

Enhancing Diffusion Models for High-Quality Image Generation

This report presents the comprehensive implementation, evaluation, and optimization of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion Implicit Models (DDIMs), which are state-of-the-art generative models. During inference, these models take random noise as input and iteratively generate high-quality images as output. The study focuses on enhancing their generative capabilities by incorporating advanced techniques such as Classifier-Free Guidance (CFG), Latent Diffusion Models with Variational Autoencoders (VAE), and alternative noise scheduling strategies. The motivation behind this work is the growing demand for efficient and scalable generative AI models that can produce realistic images across diverse datasets, addressing challenges in applications such as art creation, image synthesis, and data augmentation. Evaluations were conducted on datasets including CIFAR-10 and ImageNet-100, with a focus on improving inference speed, computational efficiency, and image quality metrics like Frechet Inception Distance (FID). Results demonstrate that DDIM + CFG achieves faster inference and superior image quality. Challenges with VAE and noise scheduling are also highlighted, suggesting opportunities for future optimization. This work lays the groundwork for developing scalable, efficient, and high-quality generative AI systems to benefit industries ranging from entertainment to robotics.

ZeroQ: A Novel Zero Shot Quantization Framework

Quantization is a promising approach for reducing the inference time and memory footprint of neural networks. However, most existing quantization methods require access to the original training dataset for retraining during quantization. This is often not possible for applications with sensitive or proprietary data, e.g., due to privacy and security concerns. Existing zero-shot quantization methods use different heuristics to address this, but they result in poor performance, especially when quantizing to ultra-low precision. Here, we propose ZeroQ , a novel zero-shot quantization framework to address this. ZeroQ enables mixed-precision quantization without any access to the training or validation data. This is achieved by optimizing for a Distilled Dataset, which is engineered to match the statistics of batch normalization across different layers of the network. ZeroQ supports both uniform and mixed-precision quantization. For the latter, we introduce a novel Pareto frontier based method to automatically determine the mixed-precision bit setting for all layers, with no manual search involved. We extensively test our proposed method on a diverse set of models, including ResNet18/50/152, MobileNetV2, ShuffleNet, SqueezeNext, and InceptionV3 on ImageNet, as well as RetinaNet-ResNet50 on the Microsoft COCO dataset. In particular, we show that ZeroQ can achieve 1.71\% higher accuracy on MobileNetV2, as compared to the recently proposed DFQ method. Importantly, ZeroQ has a very low computational overhead, and it can finish the entire quantization process in less than 30s (0.5\% of one epoch training time of ResNet50 on ImageNet). We have open-sourced the ZeroQ frameworkhttps://github.com/amirgholami/ZeroQ.

AffineQuant: Affine Transformation Quantization for Large Language Models

The significant resource requirements associated with Large-scale Language Models (LLMs) have generated considerable interest in the development of techniques aimed at compressing and accelerating neural networks. Among these techniques, Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its noteworthy compression efficiency and cost-effectiveness in the context of training. Existing PTQ methods for LLMs limit the optimization scope to scaling transformations between pre- and post-quantization weights. In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant). This approach extends the optimization scope and thus significantly minimizing quantization errors. Additionally, by employing the corresponding inverse matrix, we can ensure equivalence between the pre- and post-quantization outputs of PTQ, thereby maintaining its efficiency and generalization capabilities. To ensure the invertibility of the transformation during optimization, we further introduce a gradual mask optimization method. This method initially focuses on optimizing the diagonal elements and gradually extends to the other elements. Such an approach aligns with the Levy-Desplanques theorem, theoretically ensuring invertibility of the transformation. As a result, significant performance improvements are evident across different LLMs on diverse datasets. To illustrate, we attain a C4 perplexity of 15.76 (2.26 lower vs 18.02 in OmniQuant) on the LLaMA2-7B model of W4A4 quantization without overhead. On zero-shot tasks, AffineQuant achieves an average of 58.61 accuracy (1.98 lower vs 56.63 in OmniQuant) when using 4/4-bit quantization for LLaMA-30B, which setting a new state-of-the-art benchmark for PTQ in LLMs.

Disentanglement via Latent Quantization

In disentangled representation learning, a model is asked to tease apart a dataset's underlying sources of variation and represent them independently of one another. Since the model is provided with no ground truth information about these sources, inductive biases take a paramount role in enabling disentanglement. In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space. Concretely, we do this by (i) quantizing the latent space into discrete code vectors with a separate learnable scalar codebook per dimension and (ii) applying strong model regularization via an unusually high weight decay. Intuitively, the latent space design forces the encoder to combinatorially construct codes from a small number of distinct scalar values, which in turn enables the decoder to assign a consistent meaning to each value. Regularization then serves to drive the model towards this parsimonious strategy. We demonstrate the broad applicability of this approach by adding it to both basic data-reconstructing (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models. For reliable evaluation, we also propose InfoMEC, a new set of metrics for disentanglement that is cohesively grounded in information theory and fixes well-established shortcomings in previous metrics. Together with regularization, latent quantization dramatically improves the modularity and explicitness of learned representations on a representative suite of benchmark datasets. In particular, our quantized-latent autoencoder (QLAE) consistently outperforms strong methods from prior work in these key disentanglement properties without compromising data reconstruction.

Extreme Image Compression using Fine-tuned VQGANs

Recent advances in generative compression methods have demonstrated remarkable progress in enhancing the perceptual quality of compressed data, especially in scenarios with low bitrates. However, their efficacy and applicability to achieve extreme compression ratios (<0.05 bpp) remain constrained. In this work, we propose a simple yet effective coding framework by introducing vector quantization (VQ)--based generative models into the image compression domain. The main insight is that the codebook learned by the VQGAN model yields a strong expressive capacity, facilitating efficient compression of continuous information in the latent space while maintaining reconstruction quality. Specifically, an image can be represented as VQ-indices by finding the nearest codeword, which can be encoded using lossless compression methods into bitstreams. We propose clustering a pre-trained large-scale codebook into smaller codebooks through the K-means algorithm, yielding variable bitrates and different levels of reconstruction quality within the coding framework. Furthermore, we introduce a transformer to predict lost indices and restore images in unstable environments. Extensive qualitative and quantitative experiments on various benchmark datasets demonstrate that the proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics and human perception at extremely low bitrates (le 0.04 bpp). Remarkably, even with the loss of up to 20% of indices, the images can be effectively restored with minimal perceptual loss.

StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder

Expert interpretation of anatomical images of the human brain is the central part of neuro-radiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data, and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642pm0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859pm0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522pm0.135 and 0.783pm0.111, respectively.

Mesa: A Memory-saving Training Framework for Transformers

There has been an explosion of interest in designing high-performance Transformers. While Transformers have delivered significant performance improvements, training such networks is extremely memory intensive owing to storing all intermediate activations that are needed for gradient computation during backpropagation, especially for long sequences. To this end, we present Mesa, a memory-saving training framework for Transformers. Specifically, Mesa uses exact activations during forward pass while storing a low-precision version of activations to reduce memory consumption during training. The low-precision activations are then dequantized during back-propagation to compute gradients. Besides, to address the heterogeneous activation distributions in the multi-head self-attention layers, we propose a head-wise activation quantization strategy, which quantizes activations based on the statistics of each head to minimize the approximation error. To further boost training efficiency, we learn quantization parameters by running estimates. More importantly, by re-investing the saved memory in employing a larger batch size or scaling up model size, we may further improve the performance under constrained computational resources. Extensive experiments on ImageNet, CIFAR-100 and ADE20K demonstrate that Mesa can achieve flexible memory-savings (up to 50%) during training while achieving comparable or even better performance. Code is available at https://github.com/ziplab/Mesa.

LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory

Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.

AriEL: volume coding for sentence generation

Mapping sequences of discrete data to a point in a continuous space makes it difficult to retrieve those sequences via random sampling. Mapping the input to a volume would make it easier to retrieve at test time, and that's the strategy followed by the family of approaches based on Variational Autoencoder. However the fact that they are at the same time optimizing for prediction and for smoothness of representation, forces them to trade-off between the two. We improve on the performance of some of the standard methods in deep learning to generate sentences by uniformly sampling a continuous space. We do it by proposing AriEL, that constructs volumes in a continuous space, without the need of encouraging the creation of volumes through the loss function. We first benchmark on a toy grammar, that allows to automatically evaluate the language learned and generated by the models. Then, we benchmark on a real dataset of human dialogues. Our results indicate that the random access to the stored information is dramatically improved, and our method AriEL is able to generate a wider variety of correct language by randomly sampling the latent space. VAE follows in performance for the toy dataset while, AE and Transformer follow for the real dataset. This partially supports to the hypothesis that encoding information into volumes instead of into points, can lead to improved retrieval of learned information with random sampling. This can lead to better generators and we also discuss potential disadvantages.

VQ4DiT: Efficient Post-Training Vector Quantization for Diffusion Transformers

The Diffusion Transformers Models (DiTs) have transitioned the network architecture from traditional UNets to transformers, demonstrating exceptional capabilities in image generation. Although DiTs have been widely applied to high-definition video generation tasks, their large parameter size hinders inference on edge devices. Vector quantization (VQ) can decompose model weight into a codebook and assignments, allowing extreme weight quantization and significantly reducing memory usage. In this paper, we propose VQ4DiT, a fast post-training vector quantization method for DiTs. We found that traditional VQ methods calibrate only the codebook without calibrating the assignments. This leads to weight sub-vectors being incorrectly assigned to the same assignment, providing inconsistent gradients to the codebook and resulting in a suboptimal result. To address this challenge, VQ4DiT calculates the candidate assignment set for each weight sub-vector based on Euclidean distance and reconstructs the sub-vector based on the weighted average. Then, using the zero-data and block-wise calibration method, the optimal assignment from the set is efficiently selected while calibrating the codebook. VQ4DiT quantizes a DiT XL/2 model on a single NVIDIA A100 GPU within 20 minutes to 5 hours depending on the different quantization settings. Experiments show that VQ4DiT establishes a new state-of-the-art in model size and performance trade-offs, quantizing weights to 2-bit precision while retaining acceptable image generation quality.

Q-HyViT: Post-Training Quantization of Hybrid Vision Transformers with Bridge Block Reconstruction for IoT Systems

Recently, vision transformers (ViTs) have superseded convolutional neural networks in numerous applications, including classification, detection, and segmentation. However, the high computational requirements of ViTs hinder their widespread implementation. To address this issue, researchers have proposed efficient hybrid transformer architectures that combine convolutional and transformer layers with optimized attention computation of linear complexity. Additionally, post-training quantization has been proposed as a means of mitigating computational demands. For mobile devices, achieving optimal acceleration for ViTs necessitates the strategic integration of quantization techniques and efficient hybrid transformer structures. However, no prior investigation has applied quantization to efficient hybrid transformers. In this paper, we discover that applying existing post-training quantization (PTQ) methods for ViTs to efficient hybrid transformers leads to a drastic accuracy drop, attributed to the four following challenges: (i) highly dynamic ranges, (ii) zero-point overflow, (iii) diverse normalization, and (iv) limited model parameters (<5M). To overcome these challenges, we propose a new post-training quantization method, which is the first to quantize efficient hybrid ViTs (MobileViTv1, MobileViTv2, Mobile-Former, EfficientFormerV1, EfficientFormerV2). We achieve a significant improvement of 17.73% for 8-bit and 29.75% for 6-bit on average, respectively, compared with existing PTQ methods (EasyQuant, FQ-ViT, PTQ4ViT, and RepQ-ViT)}. We plan to release our code at https://gitlab.com/ones-ai/q-hyvit.

OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting

Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. https://github.com/BrotherHappy/OSTQuant{https://github.com/BrotherHappy/OSTQuant}.