- Deep Learning Based Joint Beamforming Design in IRS-Assisted Secure Communications In this article, physical layer security (PLS) in an intelligent reflecting surface (IRS) assisted multiple-input multiple-output multiple antenna eavesdropper (MIMOME) system is studied. In particular, we consider a practical scenario without instantaneous channel state information (CSI) of the eavesdropper and assume that the eavesdropping channel is a Rayleigh channel. To reduce the complexity of currently available IRS-assisted PLS schemes, we propose a low-complexity deep learning (DL) based approach to design transmitter beamforming and IRS jointly, where the precoding vector and phase shift matrix are designed to minimize the secrecy outage probability. Simulation results demonstrate that the proposed DL-based approach can achieve a similar performance of that with conventional alternating optimization (AO) algorithms for a significant reduction in the computational complexity. 3 authors · Apr 4, 2023
- Taxation Perspectives from Large Language Models: A Case Study on Additional Tax Penalties How capable are large language models (LLMs) in the domain of taxation? Although numerous studies have explored the legal domain in general, research dedicated to taxation remain scarce. Moreover, the datasets used in these studies are either simplified, failing to reflect the real-world complexities, or unavailable as open source. To address this gap, we introduce PLAT, a new benchmark designed to assess the ability of LLMs to predict the legitimacy of additional tax penalties. PLAT is constructed to evaluate LLMs' understanding of tax law, particularly in cases where resolving the issue requires more than just applying related statutes. Our experiments with six LLMs reveal that their baseline capabilities are limited, especially when dealing with conflicting issues that demand a comprehensive understanding. However, we found that enabling retrieval, self-reasoning, and discussion among multiple agents with specific role assignments, this limitation can be mitigated. 4 authors · Mar 5