- MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing, demonstrating exceptional capabilities in reasoning, tool usage, and memory. As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework that captures their abilities in reasoning, planning, collaboration, and more. This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize games such as Chameleon and Undercover, alongside game theory scenarios like Cost Sharing, Multi-player Prisoner's Dilemma, and Public Good, to create diverse testing environments. Our framework is fortified with the Probabilistic Graphical Modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. The benchmark evaluates seven multi-agent systems powered by different LLMs, quantitatively highlighting a significant capability gap over threefold between the strongest, GPT-4, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the inherent abilities of all selected models by 50% on average. Our codes are released here https://github.com/cathyxl/MAgIC. 8 authors · Nov 14, 2023
- Do Large Language Models have Problem-Solving Capability under Incomplete Information Scenarios? The evaluation of the problem-solving capability under incomplete information scenarios of Large Language Models (LLMs) is increasingly important, encompassing capabilities such as questioning, knowledge search, error detection, and path planning. Current research mainly focus on LLMs' problem-solving capability such as ``Twenty Questions''. However, these kinds of games do not require recognizing misleading cues which are necessary in the incomplete information scenario. Moreover, the existing game such as ``Who is undercover'' are highly subjective, making it challenging for evaluation. Therefore, in this paper, we introduce a novel game named BrainKing based on the ``Who is undercover'' and ``Twenty Questions'' for evaluating LLM capabilities under incomplete information scenarios. It requires LLMs to identify target entities with limited yes-or-no questions and potential misleading answers. By setting up easy, medium, and hard difficulty modes, we comprehensively assess the performance of LLMs across various aspects. Our results reveal the capabilities and limitations of LLMs in BrainKing, providing significant insights of LLM problem-solving levels. 7 authors · Sep 23, 2024