new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 28

Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models

We present Branch-Train-Merge (BTM), a communication-efficient algorithm for embarrassingly parallel training of large language models (LLMs). We show it is possible to independently train subparts of a new class of LLMs on different subsets of the data, eliminating the massive multi-node synchronization currently required to train LLMs. BTM learns a set of independent expert LMs (ELMs), each specialized to a different textual domain, such as scientific or legal text. These ELMs can be added and removed to update data coverage, ensembled to generalize to new domains, or averaged to collapse back to a single LM for efficient inference. New ELMs are learned by branching from (mixtures of) ELMs in the current set, further training the parameters on data for the new domain, and then merging the resulting model back into the set for future use. Experiments show that BTM improves in- and out-of-domain perplexities as compared to GPT-style Transformer LMs, when controlling for training cost. Through extensive analysis, we show that these results are robust to different ELM initialization schemes, but require expert domain specialization; LM ensembles with random data splits do not perform well. We also present a study of scaling BTM into a new corpus of 64 domains (192B whitespace-separated tokens in total); the resulting LM (22.4B total parameters) performs as well as a Transformer LM trained with 2.5 times more compute. These gains grow with the number of domains, suggesting more aggressive parallelism could be used to efficiently train larger models in future work.

Neural Network Verification with Branch-and-Bound for General Nonlinearities

Branch-and-bound (BaB) is among the most effective techniques for neural network (NN) verification. However, existing works on BaB for NN verification have mostly focused on NNs with piecewise linear activations, especially ReLU networks. In this paper, we develop a general framework, named GenBaB, to conduct BaB on general nonlinearities to verify NNs with general architectures, based on linear bound propagation for NN verification. To decide which neuron to branch, we design a new branching heuristic which leverages linear bounds as shortcuts to efficiently estimate the potential improvement after branching. To decide nontrivial branching points for general nonlinear functions, we propose to pre-optimize branching points, which can be efficiently leveraged during verification with a lookup table. We demonstrate the effectiveness of our GenBaB on verifying a wide range of NNs, including NNs with activation functions such as Sigmoid, Tanh, Sine and GeLU, as well as NNs involving multi-dimensional nonlinear operations such as multiplications in LSTMs and Vision Transformers. Our framework also allows the verification of general nonlinear computation graphs and enables verification applications beyond simple NNs, particularly for AC Optimal Power Flow (ACOPF). GenBaB is part of the latest alpha,!beta-CROWN, the winner of the 4th and the 5th International Verification of Neural Networks Competition (VNN-COMP 2023 and 2024).

Dual-Branch Network for Portrait Image Quality Assessment

Portrait images typically consist of a salient person against diverse backgrounds. With the development of mobile devices and image processing techniques, users can conveniently capture portrait images anytime and anywhere. However, the quality of these portraits may suffer from the degradation caused by unfavorable environmental conditions, subpar photography techniques, and inferior capturing devices. In this paper, we introduce a dual-branch network for portrait image quality assessment (PIQA), which can effectively address how the salient person and the background of a portrait image influence its visual quality. Specifically, we utilize two backbone networks (i.e., Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it. To enhance the quality-aware feature representation of the backbones, we pre-train them on the large-scale video quality assessment dataset LSVQ and the large-scale facial image quality assessment dataset GFIQA. Additionally, we leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features. Finally, we concatenate these features and regress them into quality scores via a multi-perception layer (MLP). We employ the fidelity loss to train the model via a learning-to-rank manner to mitigate inconsistencies in quality scores in the portrait image quality assessment dataset PIQ. Experimental results demonstrate that the proposed model achieves superior performance in the PIQ dataset, validating its effectiveness. The code is available at https://github.com/sunwei925/DN-PIQA.git.

DualDiff+: Dual-Branch Diffusion for High-Fidelity Video Generation with Reward Guidance

Accurate and high-fidelity driving scene reconstruction demands the effective utilization of comprehensive scene information as conditional inputs. Existing methods predominantly rely on 3D bounding boxes and BEV road maps for foreground and background control, which fail to capture the full complexity of driving scenes and adequately integrate multimodal information. In this work, we present DualDiff, a dual-branch conditional diffusion model designed to enhance driving scene generation across multiple views and video sequences. Specifically, we introduce Occupancy Ray-shape Sampling (ORS) as a conditional input, offering rich foreground and background semantics alongside 3D spatial geometry to precisely control the generation of both elements. To improve the synthesis of fine-grained foreground objects, particularly complex and distant ones, we propose a Foreground-Aware Mask (FGM) denoising loss function. Additionally, we develop the Semantic Fusion Attention (SFA) mechanism to dynamically prioritize relevant information and suppress noise, enabling more effective multimodal fusion. Finally, to ensure high-quality image-to-video generation, we introduce the Reward-Guided Diffusion (RGD) framework, which maintains global consistency and semantic coherence in generated videos. Extensive experiments demonstrate that DualDiff achieves state-of-the-art (SOTA) performance across multiple datasets. On the NuScenes dataset, DualDiff reduces the FID score by 4.09% compared to the best baseline. In downstream tasks, such as BEV segmentation, our method improves vehicle mIoU by 4.50% and road mIoU by 1.70%, while in BEV 3D object detection, the foreground mAP increases by 1.46%. Code will be made available at https://github.com/yangzhaojason/DualDiff.

DEFT: Differentiable Branched Discrete Elastic Rods for Modeling Furcated DLOs in Real-Time

Autonomous wire harness assembly requires robots to manipulate complex branched cables with high precision and reliability. A key challenge in automating this process is predicting how these flexible and branched structures behave under manipulation. Without accurate predictions, it is difficult for robots to reliably plan or execute assembly operations. While existing research has made progress in modeling single-threaded Deformable Linear Objects (DLOs), extending these approaches to Branched Deformable Linear Objects (BDLOs) presents fundamental challenges. The junction points in BDLOs create complex force interactions and strain propagation patterns that cannot be adequately captured by simply connecting multiple single-DLO models. To address these challenges, this paper presents Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT), a novel framework that combines a differentiable physics-based model with a learning framework to: 1) accurately model BDLO dynamics, including dynamic propagation at junction points and grasping in the middle of a BDLO, 2) achieve efficient computation for real-time inference, and 3) enable planning to demonstrate dexterous BDLO manipulation. A comprehensive series of real-world experiments demonstrates DEFT's efficacy in terms of accuracy, computational speed, and generalizability compared to state-of-the-art alternatives. Project page:https://roahmlab.github.io/DEFT/.

TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees

In the domain of complex reasoning tasks, such as mathematical reasoning, recent advancements have proposed the use of Direct Preference Optimization (DPO) to suppress output of dispreferred responses, thereby enhancing the long-chain reasoning capabilities of large language models (LLMs). To this end, these studies employed LLMs to generate preference trees via Tree-of-thoughts (ToT) and sample the paired preference responses required by the DPO algorithm. However, the DPO algorithm based on binary preference optimization is unable to learn multiple responses with varying degrees of preference/dispreference that provided by the preference trees, resulting in incomplete preference learning. In this work, we introduce Tree Preference Optimization (TPO), that does not sample paired preference responses from the preference tree; instead, it directly learns from the entire preference tree during the fine-tuning. Specifically, TPO formulates the language model alignment as a Preference List Ranking problem, where the policy can potentially learn more effectively from a ranked preference list of responses given the prompt. In addition, to further assist LLMs in identifying discriminative steps within long-chain reasoning and increase the relative reward margin in the preference list, TPO utilizes Adaptive Step Reward to adjust the reward values of each step in trajectory for performing fine-grained preference optimization. We carry out extensive experiments on mathematical reasoning tasks to evaluate TPO. The experimental results indicate that TPO consistently outperforms DPO across three public large language models on four datasets.

JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations

The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.

Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning

Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities, making them highly successful in a variety of tasks. However, when used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4. As intelligent agents, LLMs need to have the capabilities of task planning, long-term memory, and the ability to leverage external tools to achieve satisfactory performance. Various methods have been proposed to enhance the agent capabilities of LLMs. On the one hand, methods involve constructing agent-specific data and fine-tuning the models. On the other hand, some methods focus on designing prompts that effectively activate the reasoning abilities of the LLMs. We explore both strategies on the 7B and 13B models. We propose a comprehensive method for constructing agent-specific data using GPT-4. Through supervised fine-tuning with constructed data, we find that for these models with a relatively small number of parameters, supervised fine-tuning can significantly reduce hallucination outputs and formatting errors in agent tasks. Furthermore, techniques such as multi-path reasoning and task decomposition can effectively decrease problem complexity and enhance the performance of LLMs as agents. We evaluate our method on five agent tasks of AgentBench and achieve satisfactory results.

A noncommutative Bianchi I model with radiation

In the present work, we study the dynamical evolution of an homogeneous and anisotropic, noncommutative (NC) Bianchi I (BI) model coupled to a radiation perfect fluid. Our first motivation is determining if the present model tends to an homogeneous and isotropic NC Friedmann-Robertson-Walker (FRW) model, during its evolution. In order to simplify our task, we use the Misner parametrization of the BI metric. In terms of that parametrization the BI metric has three metric functions: the scale factor a(t) and the two parameters beta_pm (t), which measure the spatial anisotropy of the model. Our second motivation is trying to describe the present accelerated expansion of the universe using noncommutativity (NCTY). The NCTY is introduced by two nontrivial Poisson brackets between some geometrical as well as matter variables of the model. We recover the description in terms of commutative variables by introducing some variables transformations that depend on the NC parameter. Using those variables transformations, we rewrite the total NC Hamiltonian of the model in terms of commutative variables. From the resulting Hamiltonian, we obtain the dynamical equations for a generic perfect fluid. In order to solve these equations, we restrict our attention to a model where the perfect fluid is radiation. We solve, numerically, these equations and compare the NC solutions to the corresponding commutative ones. The comparison shows that the NC model may be considered as a possible candidate for describing the accelerated expansion of the universe. Finally, we obtain estimates for the NC parameter and compare the main results of the NC BI model coupled to radiation with the same NC BI model coupled to other perfect fluids. As our main result, we show that the solutions, after some time, produce an isotropic universe.

Euclid Quick Data Release (Q1): From images to multiwavelength catalogues: the Euclid MERge Processing Function

The Euclid satellite is an ESA mission that was launched in July 2023. \Euclid is working in its regular observing mode with the target of observing an area of 14,000~deg^2 with two instruments, the Visible Camera (VIS) and the Near IR Spectrometer and Photometer (NISP) down to I_{rm E} = 24.5~mag (10, sigma) in the Euclid Wide Survey. Ground-based imaging data in the ugriz bands complement the \Euclid data to enable photo-z determination and VIS PSF modeling for week lensing analysis. Euclid investigates the distance-redshift relation and the evolution of cosmic structures by measuring shapes and redshifts of galaxies and clusters of galaxies out to zsim 2. Generating the multi-wavelength catalogues from \Euclid and ground-based data is an essential part of the \Euclid data processing system. In the framework of the \Euclid Science Ground Segment (SGS), the aim of the MER Processing Function (PF) pipeline is to detect objects in the \Euclid imaging data, measure their properties, and MERge them into a single multi-wavelength catalogue. The MER PF pipeline performs source detection on both visible (VIS) and near-infrared (NIR) images and offers four different photometric measurements: Kron total flux, aperture photometry on PSF-matched images, template fitting photometry, and S\'ersic fitting photometry. Furthermore, the MER PF pipeline measures a set of ancillary quantities, spanning from morphology to quality flags, to better characterise all detected sources. In this paper, we show how the MER PF pipeline is designed, detailing its main steps, and we show that the pipeline products meet the tight requirements that Euclid aims to achieve on photometric accuracy. We also present the other measurements (e.g. morphology) that are included in the OU-MER output catalogues and we list all output products coming out of the MER PF pipeline.

Euclid. II. The VIS Instrument

This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.

GOALS-JWST: Gas Dynamics and Excitation in NGC7469 revealed by NIRSpec

We present new JWST-NIRSpec IFS data for the luminous infrared galaxy NGC7469: a nearby (70.6Mpc) active galaxy with a Sy 1.5 nucleus that drives a highly ionized gas outflow and a prominent nuclear star-forming ring. Using the superb sensitivity and high spatial resolution of the JWST instrument NIRSpec-IFS, we investigate the role of the Seyfert nucleus in the excitation and dynamics of the circumnuclear gas. Our analysis focuses on the [Fe ii], H2, and hydrogen recombination lines that trace the radiation/shocked-excited molecular and ionized ISM around the AGN. We investigate the gas excitation through H2/Br{\gamma} and [Fe ii]/Paeta emission line ratios and find that photoionization by the AGN dominates within the central 300 pc of the galaxy and together with a small region show ing signatures of shock-heated gas; these shock-heated regions are likely associated with a compact radio jet. In addition, the velocity field and velocity dispersion maps reveal complex gas kinematics. Rotation is the dominant feature, but we also identify non-circular motions consistent with gas inflows as traced by the velocity residuals and the spiral pattern in the Pa{\alpha} velocity dispersion map. The inflow is consistent with the mass outflow rate and two orders of magnitude higher than the AGN accretion rate. The compact nuclear radio jet has enough power to drive the highly ionized outflow. This scenario suggests that the inflow and outflow are in a self-regulating feeding-feedback process, with a contribution from the radio jet helping to drive the outflow.

Vision-Language Model IP Protection via Prompt-based Learning

Vision-language models (VLMs) like CLIP (Contrastive Language-Image Pre-Training) have seen remarkable success in visual recognition, highlighting the increasing need to safeguard the intellectual property (IP) of well-trained models. Effective IP protection extends beyond ensuring authorized usage; it also necessitates restricting model deployment to authorized data domains, particularly when the model is fine-tuned for specific target domains. However, current IP protection methods often rely solely on the visual backbone, which may lack sufficient semantic richness. To bridge this gap, we introduce IP-CLIP, a lightweight IP protection strategy tailored to CLIP, employing a prompt-based learning approach. By leveraging the frozen visual backbone of CLIP, we extract both image style and content information, incorporating them into the learning of IP prompt. This strategy acts as a robust barrier, effectively preventing the unauthorized transfer of features from authorized domains to unauthorized ones. Additionally, we propose a style-enhancement branch that constructs feature banks for both authorized and unauthorized domains. This branch integrates self-enhanced and cross-domain features, further strengthening IP-CLIP's capability to block features from unauthorized domains. Finally, we present new three metrics designed to better balance the performance degradation of authorized and unauthorized domains. Comprehensive experiments in various scenarios demonstrate its promising potential for application in IP protection tasks for VLMs.

PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting

Due to the recurrent structure of RNN, the long information propagation path poses limitations in capturing long-term dependencies, gradient explosion/vanishing issues, and inefficient sequential execution. Based on this, we propose a novel paradigm called Parallel Gated Network (PGN) as the new successor to RNN. PGN directly captures information from previous time steps through the designed Historical Information Extraction (HIE) layer and leverages gated mechanisms to select and fuse it with the current time step information. This reduces the information propagation path to O(1), effectively addressing the limitations of RNN. To enhance PGN's performance in long-range time series forecasting tasks, we propose a novel temporal modeling framework called Temporal PGN (TPGN). TPGN incorporates two branches to comprehensively capture the semantic information of time series. One branch utilizes PGN to capture long-term periodic patterns while preserving their local characteristics. The other branch employs patches to capture short-term information and aggregate the global representation of the series. TPGN achieves a theoretical complexity of O(L), ensuring efficiency in its operations. Experimental results on five benchmark datasets demonstrate the state-of-the-art (SOTA) performance and high efficiency of TPGN, further confirming the effectiveness of PGN as the new successor to RNN in long-range time series forecasting. The code is available in this repository: https://github.com/Water2sea/TPGN.

Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks

Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.

Old Photo Restoration via Deep Latent Space Translation

We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with apartial nonlocal block targeting to the structured defects, such as scratches and dust spots, and a local branch targeting to the unstructured defects, such as noises and blurriness. Two branches are fused in the latent space, leading to improved capability to restore old photos from multiple defects. Furthermore, we apply another face refinement network to recover fine details of faces in the old photos, thus ultimately generating photos with enhanced perceptual quality. With comprehensive experiments, the proposed pipeline demonstrates superior performance over state-of-the-art methods as well as existing commercial tools in terms of visual quality for old photos restoration.