Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSpin pumping by a moving domain wall at the interface of an antiferromagnetic insulator and a two-dimensional metal
A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the formalism of Keldysh Green's functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron's Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.
Recovering a Molecule's 3D Dynamics from Liquid-phase Electron Microscopy Movies
The dynamics of biomolecules are crucial for our understanding of their functioning in living systems. However, current 3D imaging techniques, such as cryogenic electron microscopy (cryo-EM), require freezing the sample, which limits the observation of their conformational changes in real time. The innovative liquid-phase electron microscopy (liquid-phase EM) technique allows molecules to be placed in the native liquid environment, providing a unique opportunity to observe their dynamics. In this paper, we propose TEMPOR, a Temporal Electron MicroscoPy Object Reconstruction algorithm for liquid-phase EM that leverages an implicit neural representation (INR) and a dynamical variational auto-encoder (DVAE) to recover time series of molecular structures. We demonstrate its advantages in recovering different motion dynamics from two simulated datasets, 7bcq and Cas9. To our knowledge, our work is the first attempt to directly recover 3D structures of a temporally-varying particle from liquid-phase EM movies. It provides a promising new approach for studying molecules' 3D dynamics in structural biology.
Detection asymmetry in solar energetic particle events
Context. Solar energetic particles (SEPs) are detected in interplanetary space in association with flares and coronal mass ejections (CMEs) at the Sun. The magnetic connection between the observing spacecraft and the solar active region (AR) source of the event is a key parameter in determining whether SEPs are observed and the properties of the particle event. Aims. We investigate whether an east-west asymmetry in the detection of SEP events is present in observations and discuss its possible link to corotation of magnetic flux tubes with the Sun. Methods. We used a published dataset of 239 CMEs recorded between 2006 and 2017 and having source regions both on the front side and far side of the Sun as seen from Earth. We produced distributions of occurrence of in-situ SEP intensity enhancements associated with the CME events, versus \Delta \phi, the separation in longitude between the source active region and the magnetic footpoint of the observing spacecraft based on the nominal Parker spiral. We focused on protons of energy >10 MeV measured by the STEREO A, STEREO B and GOES spacecraft at 1 au. We also considered the occurrence of 71-112 keV electron events detected by MESSENGER between 0.31 and 0.47 au. Results. We find an east-west asymmetry in the detection of >10 MeV proton events and of 71-112 keV electron events. For protons, observers for which the source AR is on the east side of the spacecraft footpoint and not well connected (-180 < \Delta \phi < -40) are 93% more likely to detect an SEP event compared to observers with +40 < \Delta \phi < +180. The asymmetry may be a signature of corotation of magnetic flux tubes with the Sun, given that for events with \Delta \phi < 0 corotation sweeps the particle-filled flux tubes towards the observing spacecraft, while for \Delta \phi > 0 it takes them away from it.
Stellar evolution and axion-like particles: new constraints and hints from globular clusters in the GAIA DR3 data
Axion-like particles (ALPs) are hypothetical pseudoscalar bosons, natural in extensions of the Standard Model. Their interactions with ordinary matter and radiation are suppressed, making it challenging to detect them in laboratory experiments. However, these particles, produced within stellar interiors, can provide an additional mechanism for energy loss, potentially influencing stellar evolution. Prominent methods for searching for such effects involve measuring the properties of red giants and helium-burning stars in globular clusters (GCs). Here we use published catalogs of stars selected as members of seven GCs on the basis of parallaxes and proper motions measured by Gaia (Data Realease 3). Making use of previously derived theoretical relations and the new data, we find the upper limit on the ALP-electron coupling, g_{ae}<5.2*10^{-14} (95% CL), and an indication (3.3 sigma) to nonzero ALP-photon coupling, g_{a\gamma}=(6.5+1.1-1.3)*10^{-11} GeV^{-1}. Given the precision of contemporary observational data, it is imperative to refine ALP constraints through more sophisticated analyses, which will be explored in detail elsewhere.
Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere
Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hours to days, separated by 'quieter' radial fields. We aim to further diagnose the origin of these patches using measurements of proton temperature anisotropy that can illuminate possible links to formation processes in the solar corona. We fitted 3D bi-Maxwellian functions to the core of proton velocity distributions measured by the SPAN-Ai instrument onboard PSP to obtain the proton parallel, T_{p,|}, and perpendicular, T_{p,perp}, temperature. We show that the presence of patches is highlighted by a transverse deflection in the flow and magnetic field away from the radial direction. These deflections are correlated with enhancements in T_{p,|}, while T_{p,perp} remains relatively constant. Patches sometimes exhibit small proton and electron density enhancements. We interpret that patches are not simply a group of switchbacks, but rather switchbacks are embedded within a larger-scale structure identified by enhanced T_{p,|} that is distinct from the surrounding solar wind. We suggest that these observations are consistent with formation by reconnection-associated mechanisms in the corona.
A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the "Reactor Antineutrino Anomaly". NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a "Raghavan Optical Lattice" (ROL) consisting of 3375 boron or ^6Li loaded plastic scintillator cubical cells 6.3\,cm (2.500") on a side. Cell boundaries have a 0.127\,mm (0.005") air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
Discovering heavy neutrino-antineutrino oscillations at the $Z$-pole
Collider-testable type I seesaw extensions of the Standard Model are generally protected by an approximate lepton number (LN) symmetry. Consequently, they predict pseudo-Dirac heavy neutral leptons (HNLs) composed of two nearly degenerate Majorana fields. The interference between the two mass eigenstates can induce heavy neutrino-antineutrino oscillations (NNOs) leading to observable lepton number violation (LNV), even though the LN symmetry is approximately conserved. These NNOs could be resolved in long-lived HNL searches at collider experiments, such as the proposed Future Circular e^+e^- Collider (FCC-ee) or Circular Electron Positron Collider (CEPC). However, during their Z-pole runs, the LN carried away by the light (anti)neutrinos produced alongside the HNLs prevents LNV from being observed directly. Nevertheless, NNOs materialise as oscillating signatures in final state distributions. We discuss and compare a selection of such oscillating observables, and perform a Monte Carlo simulation to assess the parameter space in which NNOs could be resolved.
Learning Multi-view Anomaly Detection
This study explores the recently proposed challenging multi-view Anomaly Detection (AD) task. Single-view tasks would encounter blind spots from other perspectives, resulting in inaccuracies in sample-level prediction. Therefore, we introduce the Multi-View Anomaly Detection (MVAD) framework, which learns and integrates features from multi-views. Specifically, we proposed a Multi-View Adaptive Selection (MVAS) algorithm for feature learning and fusion across multiple views. The feature maps are divided into neighbourhood attention windows to calculate a semantic correlation matrix between single-view windows and all other views, which is a conducted attention mechanism for each single-view window and the top-K most correlated multi-view windows. Adjusting the window sizes and top-K can minimise the computational complexity to linear. Extensive experiments on the Real-IAD dataset for cross-setting (multi/single-class) validate the effectiveness of our approach, achieving state-of-the-art performance among sample 4.1\%uparrow/ image 5.6\%uparrow/pixel 6.7\%uparrow levels with a total of ten metrics with only 18M parameters and fewer GPU memory and training time.
PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery
Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the Post-training dAta Selection method for Efficient pruned large language model Recovery (PASER). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.
Coherent shuttle of electron-spin states
We demonstrate a coherent spin shuttle through a GaAs/AlGaAs quadruple-quantum-dot array. Starting with two electrons in a spin-singlet state in the first dot, we shuttle one electron over to either the second, third or fourth dot. We observe that the separated spin-singlet evolves periodically into the m=0 spin-triplet and back before it dephases due to nuclear spin noise. We attribute the time evolution to differences in the local Zeeman splitting between the respective dots. With the help of numerical simulations, we analyse and discuss the visibility of the singlet-triplet oscillations and connect it to the requirements for coherent spin shuttling in terms of the inter-dot tunnel coupling strength and rise time of the pulses. The distribution of entangled spin pairs through tunnel coupled structures may be of great utility for connecting distant qubit registers on a chip.
What's in a Name? Auditing Large Language Models for Race and Gender Bias
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4. In our study, we prompt the models for advice involving a named individual across a variety of scenarios, such as during car purchase negotiations or election outcome predictions. We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women. Names associated with Black women receive the least advantageous outcomes. The biases are consistent across 42 prompt templates and several models, indicating a systemic issue rather than isolated incidents. While providing numerical, decision-relevant anchors in the prompt can successfully counteract the biases, qualitative details have inconsistent effects and may even increase disparities. Our findings underscore the importance of conducting audits at the point of LLM deployment and implementation to mitigate their potential for harm against marginalized communities.
Run-Off Election: Improved Provable Defense against Data Poisoning Attacks
In data poisoning attacks, an adversary tries to change a model's prediction by adding, modifying, or removing samples in the training data. Recently, ensemble-based approaches for obtaining provable defenses against data poisoning have been proposed where predictions are done by taking a majority vote across multiple base models. In this work, we show that merely considering the majority vote in ensemble defenses is wasteful as it does not effectively utilize available information in the logits layers of the base models. Instead, we propose Run-Off Election (ROE), a novel aggregation method based on a two-round election across the base models: In the first round, models vote for their preferred class and then a second, Run-Off election is held between the top two classes in the first round. Based on this approach, we propose DPA+ROE and FA+ROE defense methods based on Deep Partition Aggregation (DPA) and Finite Aggregation (FA) approaches from prior work. We evaluate our methods on MNIST, CIFAR-10, and GTSRB and obtain improvements in certified accuracy by up to 3%-4%. Also, by applying ROE on a boosted version of DPA, we gain improvements around 12%-27% comparing to the current state-of-the-art, establishing a new state-of-the-art in (pointwise) certified robustness against data poisoning. In many cases, our approach outperforms the state-of-the-art, even when using 32 times less computational power.
Detecting Calls to Action in Multimodal Content: Analysis of the 2021 German Federal Election Campaign on Instagram
This study investigates the automated classification of Calls to Action (CTAs) within the 2021 German Instagram election campaign to advance the understanding of mobilization in social media contexts. We analyzed over 2,208 Instagram stories and 712 posts using fine-tuned BERT models and OpenAI's GPT-4 models. The fine-tuned BERT model incorporating synthetic training data achieved a macro F1 score of 0.93, demonstrating a robust classification performance. Our analysis revealed that 49.58% of Instagram posts and 10.64% of stories contained CTAs, highlighting significant differences in mobilization strategies between these content types. Additionally, we found that FDP and the Greens had the highest prevalence of CTAs in posts, whereas CDU and CSU led in story CTAs.
AI Deception: A Survey of Examples, Risks, and Potential Solutions
This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta's CICERO) built for specific competitive situations, and general-purpose AI systems (such as large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI systems. Finally, we outline several potential solutions to the problems posed by AI deception: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.
TI-CNN: Convolutional Neural Networks for Fake News Detection
With the development of social networks, fake news for various commercial and political purposes has been appearing in large numbers and gotten widespread in the online world. With deceptive words, people can get infected by the fake news very easily and will share them without any fact-checking. For instance, during the 2016 US president election, various kinds of fake news about the candidates widely spread through both official news media and the online social networks. These fake news is usually released to either smear the opponents or support the candidate on their side. The erroneous information in the fake news is usually written to motivate the voters' irrational emotion and enthusiasm. Such kinds of fake news sometimes can bring about devastating effects, and an important goal in improving the credibility of online social networks is to identify the fake news timely. In this paper, we propose to study the fake news detection problem. Automatic fake news identification is extremely hard, since pure model based fact-checking for news is still an open problem, and few existing models can be applied to solve the problem. With a thorough investigation of a fake news data, lots of useful explicit features are identified from both the text words and images used in the fake news. Besides the explicit features, there also exist some hidden patterns in the words and images used in fake news, which can be captured with a set of latent features extracted via the multiple convolutional layers in our model. A model named as TI-CNN (Text and Image information based Convolutinal Neural Network) is proposed in this paper. By projecting the explicit and latent features into a unified feature space, TI-CNN is trained with both the text and image information simultaneously. Extensive experiments carried on the real-world fake news datasets have demonstrate the effectiveness of TI-CNN.
A Distributed Protocol for Detection of Packet Dropping Attack in Mobile Ad Hoc Networks
In multi-hop mobile ad hoc networks (MANETs),mobile nodes cooperate with each other without using any infrastructure such as access points or base stations. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Among the various attacks to which MANETs are vulnerable, malicious packet dropping attack is very common where a malicious node can partially degrade or completely disrupt communication in the network by consistently dropping packets. In this paper, a mechanism for detection of packet dropping attack is presented based on cooperative participation of the nodes in a MANET. The redundancy of routing information in an ad hoc network is utilized to make the scheme robust so that it works effectively even in presence of transient network partitioning and Byzantine failure of nodes. The proposed scheme is fully cooperative and thus more secure as the vulnerabilities of any election algorithm used for choosing a subset of nodes for cooperation are absent. Simulation results show the effectiveness of the protocol.
Statistics of X-Ray Polarization Measurements
The polarization of an X-ray beam that produces electrons with velocity components perpendicular to the beam generates an azimuthal distribution of the ejected electrons. We present methods for simulating and for analyzing the angular dependence of electron detections which enable us to derive simple analytical expressions for useful statistical properties of observable data. The derivations are verified by simulations. While we confirm the results of previous work on this topic, we provide an extension needed for analytical treatment of the full range of possible polarization amplitudes.
Magnetic correction to the Anomalous Magnetic Moment of Electron
We investigate the leading order correction of anomalous magnetic moment (AMM) to the electron in weak magnetic field and find that the magnetic correction is negative and magnetic field dependent, indicating a magnetic catalysis effect for the electron gas. In the laboratory to measure the g-2, the magnitude of the magnetic field B is several T, correspondingly the magnetic correction to the AMM of electron/muon is around 10^{-34}/10^{-42}, therefore the magnetic correction can be safely neglected in current measurement. However, when the magnitude of the magnetic field strength is comparable with the electron mass, the magnetic correction of electron's AMM will become considerable. This general magnetic correction to charged fermion's AMM can be extended to study QCD matter under strong magnetic field.
Predication of novel effects in rotational nuclei at high speed
The study of high-speed rotating matter is a crucial research topic in physics due to the emergence of novel phenomena. In this paper, we combined cranking covariant density functional theory (CDFT) with a similar renormalization group approach to decompose the Hamiltonian from the cranking CDFT into different Hermit components, including the non-relativistic term, the dynamical term, the spin-orbit coupling, and the Darwin term. Especially, we obtained the rotational term, the term relating to Zeeman effect-like, and the spin-rotation coupling due to consideration of rotation and spatial component of vector potential. By exploring these operators, we aim to identify novel phenomena that may occur in rotating nuclei. Signature splitting, Zeeman effect-like, spin-rotation coupling, and spin current are among the potential novelties that may arise in rotating nuclei. Additionally, we investigated the observability of these phenomena and their dependence on various factors such as nuclear deformation, rotational angular velocity, and strength of magnetic field.
Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level
It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
A New Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal, CaP_3
Using an evolutionary algorithm in combination with first-principles density functional theory calculations, we identify two-dimensional (2D) CaP_3 monolayer as a new Dirac semimetal due to inversion and nonsymmorphic spatial symmetries of the structure. This new topological material, composed of light elements, exhibits high structural stability (higher than the phase known in the literature), which is confirmed by thermodynamic and kinetic stability analysis. Moreover, it satisfies the electron filling criteria, so that its Dirac state is located near the Fermi level. The existence of the Dirac state predicted by the theoretical symmetry analysis is also confirmed by first-principles electronic band structure calculations. We find that the energy position of the Dirac state can be tuned by strain, while the Dirac state is unstable against an external electric field since it breaks the spatial inversion symmetry. Our findings should be instrumental in the development of 2D Dirac fermions based on light elements for their application in nanoelectronic devices and topological electronics.
Prompt emission of relativistic protons up to GeV energies from M6.4-class solar flare on July 17, 2023
We show evidence of particle acceleration at GEV energies associated directly with protons from the prompt emission of a long-duration M6-class solar flare on July 17, 2023, rather than from protons acceleration by shocks from its associated Coronal Mass Ejection (CME), which erupted with a speed of 1342 km/s. Solar Energetic Particles (SEP) accelerated by the blast have reached Earth, up to an almost S3 (strong) category of a radiation storm on the NOAA scale. Also, we show a temporal correlation between the fast rising of GOES-16 proton and muon excess at ground level in the count rate of the New-Tupi muon detector at the central SAA region. A Monte Carlo spectral analysis based on muon excess at New-Tupi is consistent with the acceleration of electrons and protons (ions) up to relativistic energies (GeV energy range) in the impulsive phase of the flare. In addition, we present another two marginal particle excesses (with low confidence) at ground-level detectors in correlation with the solar flare prompt emission.
Drift surface solver for runaway electron current dominant equilibria during the Current Quench
Runaway electron current generated during the Current Quench phase of tokamak disruptions could result in severe damage to future high performance devices. To control and mitigate such runaway electron current, it is important to accurately describe the runaway electron current dominated equilibrium, based on which further stability analysis could be carried out. In this paper, we derive a Grad-Shafranov-like equation solving for the axisymmetric drift surfaces of the runaway electrons for the simple case that all runaway electron share the same parallel momentum. This new equilibrium equation is then numerically solved with simple rectangular wall with ITER-like and MAST-like geometry parameters. The deviation between the drift surfaces and the flux surfaces is readily obtained, and runaway electrons is found to be well confined even in regions with open field lines. The change of the runaway electron parallel momentum is found to result in a horizontal current center displacement without any changes in the total current or the external field. The runaway current density profile is found to affect the susceptibility of such displacement, with flatter profiles result in more displacement by the same momentum change. With up-down asymmetry in the external poloidal field, such displacement is accompanied by a vertical displacement of runaway electron current. It is found that this effect is more pronounced in smaller, compact device and weaker poloidal field cases. The above results demonstrate the dynamics of current center displacement caused by the momentum space change in the runaway electrons, and pave way for future, more sophisticated runaway current equilibrium theory with more realistic consideration on the runaway electron momentum distribution. This new equilibrium theory also provides foundation for future stability analysis of the runaway electron current.
Creation of single vacancies in hBN with electron irradiation
Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of two-dimensional materials. The displacement cross sections of monolayer hBN are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions where chemical etching appears to have been dominant. Notably, is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for vibrations of the atoms. A theoretical description is developed to account for lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modelled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.
Potential and Limitation of High-Frequency Cores and Caches
This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.
Conditions for radiative zones in the molecular hydrogen envelope of Jupiter and Saturn: The role of alkali metals
Interior models of gas giants in the Solar System traditionally assume a fully convective molecular hydrogen envelope. However, recent observations from the Juno mission suggest a possible depletion of alkali metals in Jupiter's molecular hydrogen envelope, indicating that a stable radiative layer could exist at the kilobar level. Recent studies propose that deep stable layers help reconcile various Jupiter observations, including its atmospheric water and CO abundances and the depth of its zonal winds. However, opacity tables used to infer stable layers are often outdated and incomplete, leaving the precise molecular hydrogen envelope composition required for a deep radiative zone uncertain. In this paper, we determine atmospheric compositions that can lead to the formation of a radiative zone at the kilobar level in Jupiter and Saturn today. We computed radiative opacity tables covering pressures up to 10^5 bar, including the most abundant molecules present in the gas giants of the Solar System, as well as contributions from free electrons, metal hydrides, oxides, and atomic species, using the most up-to-date line lists published in the literature. These tables were used to calculate Rosseland-mean opacities for the molecular hydrogen envelopes of Jupiter and Saturn, which were then compared to the critical mean opacity required to maintain convection. We find that the presence of a radiative zone is controlled by the existence of K, Na, and NaH in the atmosphere of Jupiter and Saturn. For Jupiter, the elemental abundance of K and Na must be less than sim 10^{-3} times solar to form a radiative zone. In contrast, for Saturn, the required abundance for K and Na is below sim 10^{-4} times solar.
Two-photon interference: the Hong-Ou-Mandel effect
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries
This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.
Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.
High spin axion insulator
Axion insulators possess a quantized axion field theta=pi protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field theta=(s+1/2)^2pi. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field theta can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications.
Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice
In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid.
Potential Contribution of Young Pulsar Wind Nebulae to Galactic High-Energy Neutrino Emission
Pulsar wind nebulae (PWNe), especially the young ones, are among the most energetic astrophysical sources in the Galaxy. It is usually believed that the spin-down energy injected from the pulsars is converted into magnetic field and relativistic electrons, but the possible presence of proton acceleration inside PWNe cannot be ruled out. Previous works have estimated the neutrino emission from PWNe using various source catalogs measured in gamma-rays. However, such results rely on the sensitivity of TeV gamma-ray observations and may omit the contribution by unresolved sources. Here we estimate the potential neutrino emission from a synthetic population of PWNe in the Galaxy with a focus on the ones that are still in the free expansion phase. In the calculation, we model the temporal evolution of the free-expanding PWNe and consider the transport of protons inside the PWNe. The Crab nebula is treated as a standard template for young PWNe to evaluate some model parameters, such as the energy conversion fraction of relativistic protons and the target gas density for the hadronic process, which are relevant to neutrino production. In the optimistic case, the neutrino flux from the simulated young PWNe may constitute to 5% of the measured flux by IceCube around 100 TeV. At higher energy around 1 PeV, the neutrino emission from the population highly depends on the injection spectral shape, and also on the emission of the nearby prominent sources.
Precision measurement of the last bound states in H_2 and determination of the H + H scattering length
The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed.
On a Seldom Oversight in Fermi's Calculations: Seventy Years Later
We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made.
Quantum Monte Carlo simulations in the restricted Hilbert space of Rydberg atom arrays
Rydberg atom arrays have emerged as a powerful platform to simulate a number of exotic quantum ground states and phase transitions. To verify these capabilities numerically, we develop a versatile quantum Monte Carlo sampling technique which operates in the reduced Hilbert space generated by enforcing the constraint of a Rydberg blockade. We use the framework of stochastic series expansion and show that in the restricted space, the configuration space of operator strings can be understood as a hard rod gas in d+1 dimensions. We use this mapping to develop cluster algorithms which can be visualized as various non-local movements of rods. We study the efficiency of each of our updates individually and collectively. To elucidate the utility of the algorithm, we show that it can efficiently generate the phase diagram of a Rydberg atom array, to temperatures much smaller than all energy scales involved, on a Kagom\'e link lattice. This is of broad interest as the presence of a Z_2 spin liquid has been hypothesized recently.
Characterisation of three-body loss in {}^{166}Er and optimised production of large Bose-Einstein condensates
Ultracold gases of highly magnetic lanthanide atoms have enabled the realisation of dipolar quantum droplets and supersolids. However, future studies could be limited by the achievable atom numbers and hindered by high three-body loss rates. Here we study density-dependent atom loss in an ultracold gas of {}^{166}Er for magnetic fields below 4 G, identifying six previously unknown features which display both a strong temperature dependence and also sensitivity to the polarisation and intensity of the light used to optically trap the atoms. This detailed knowledge of the loss landscape allows us to optimise the production of dipolar BECs with more than 2 times 10^5 atoms and points towards optimal strategies for the study of large-atom-number dipolar gases in the droplet and supersolid regimes.
The enigma of the pseudogap phase of the cuprate superconductors
The last few years have seen significant experimental progress in characterizing the copper-based hole-doped high temperature superconductors in the regime of low hole density, p. Quantum oscillations, NMR, X-ray, and STM experiments have shed much light on the nature of the ordering at low temperatures. We review evidence that the order parameter in the non-Lanthanum-based cuprates is a d-form factor density-wave. This novel order acts as an unexpected window into the electronic structure of the pseudogap phase at higher temperatures in zero field: we argue in favor of a `fractionalized Fermi liquid' (FL*) with 4 pockets of spin S=1/2, charge +e fermions enclosing an area specified by p.
A photonic cluster state machine gun
We present a method to convert certain single photon sources into devices capable of emitting large strings of photonic cluster state in a controlled and pulsed "on demand" manner. Such sources would greatly reduce the resources required to achieve linear optical quantum computation. Standard spin errors, such as dephasing, are shown to affect only 1 or 2 of the emitted photons at a time. This allows for the use of standard fault tolerance techniques, and shows that the photonic machine gun can be fired for arbitrarily long times. Using realistic parameters for current quantum dot sources, we conclude high entangled-photon emission rates are achievable, with Pauli-error rates per photon of less than 0.2%. For quantum dot sources the method has the added advantage of alleviating the problematic issues of obtaining identical photons from independent, non-identical quantum dots, and of exciton dephasing.
Assembly and coherent control of a register of nuclear spin qubits
We introduce an optical tweezer platform for assembling and individually manipulating a two-dimensional register of nuclear spin qubits. Each nuclear spin qubit is encoded in the ground ^{1}S_{0} manifold of ^{87}Sr and is individually manipulated by site-selective addressing beams. We observe that spin relaxation is negligible after 5 seconds, indicating that T_1gg5 s. Furthermore, utilizing simultaneous manipulation of subsets of qubits, we demonstrate significant phase coherence over the entire register, estimating T_2^star = left(21pm7right) s and measuring T_2^echo=left(42pm6right) s.
Uniform structural phase transition in V_2O_3 without short-range distortions of the local structure
The local structure of V_{2}O_{3}, an archetypal strongly correlated electron system that displays a metal-insulator transition around 160 K, has been investigated via pair distribution function (PDF) analysis of neutron and x-ray total scattering data. The rhombohedral-to-monoclinic structural phase transition manifests as an abrupt change on all length scales in the observed PDF. No monoclinic distortions of the local structure are found above the transition, although coexisting regions of phase-separated rhombohedral and monoclinic symmetry are observed between 150 K and 160 K. This lack of structural fluctuations above the transition contrasts with the known presence of magnetic fluctuations in the high-temperature state, suggesting that the lattice degree of freedom plays a secondary role behind the spin degree of freedom in the transition mechanism.
Proposal for room-temperature quantum repeaters with nitrogen-vacancy centers and optomechanics
We propose a quantum repeater architecture that can operate under ambient conditions. Our proposal builds on recent progress towards non-cryogenic spin-photon interfaces based on nitrogen-vacancy centers, which have excellent spin coherence times even at room temperature, and optomechanics, which allows to avoid phonon-related decoherence and also allows the emitted photons to be in the telecom band. We apply the photon number decomposition method to quantify the fidelity and the efficiency of entanglement established between two remote electron spins. We describe how the entanglement can be stored in nuclear spins and extended to long distances via quasi-deterministic entanglement swapping operations involving the electron and nuclear spins. We furthermore propose schemes to achieve high-fidelity readout of the spin states at room temperature using the spin-optomechanics interface. Our work shows that long-distance quantum networks made of solid-state components that operate at room temperature are within reach of current technological capabilities.
Symmetry-invariant quantum machine learning force fields
Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.
A helical magnetic field in quasar NRAO150 revealed by Faraday rotation
Active Galactic Nuclei (AGN) are some of the most luminous and extreme environments in the Universe. The central engines of AGN, believed to be super-massive black-holes, are fed by accretion discs threaded by magnetic fields within a dense magneto-ionic medium. We report our findings from polarimetric Very-long-baseline Interferometry (VLBI) observations of quasar NRAO150 taken in October 2022 using a combined network of the Very Long Baseline Array (VLBA) and Effelsberg 100-m Radio Telescope. These observations are the first co-temporal multi-frequency polarimetric VLBI observations of NRAO150 at frequencies above 15GHz. We use the new VLBI polarization calibration procedure, GPCAL, with polarization observations of frequencies of 12GHz, 15GHz, 24GHz, and 43GHz of NRAO150. From these observations, we measure Faraday rotation. Using our measurement of Faraday rotation, we also derive the intrinsic electric vector position angle (EVPA0) for the source. As a complementary measurement we determine the behavior of polarization as a function of observed frequency. The polarization from NRAO150 only comes from the core region, with a peak polarization intensity occurring at 24GHz. Across the core region of NRAO150 we see clear gradients in Faraday rotation and EVPA0 values that are aligned with the direction of the jet curving around the core region. We find that for the majority of the polarized region the polarization fraction is greater at higher frequencies, with intrinsic polarization fractions in the core 3%. The Faraday rotation gradients and circular patterns in EVPA0 are strong evidence for a helical/toroidal magnetic field, and the presence of low intrinsic polarization fractions indicate that the polarized emission and hence the helical/toroidal magnetic field, occur within the innermost jet.
Observation of the open-charm tetraquark state T_{cs 0}^{*}(2870)^0 in the B^- rightarrow D^- D^0 K_S^0 decay
An amplitude analysis of B^-rightarrow D^- D^0 K_S^0 decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 9,fb^{-1}, collected with the LHCb detector at center-of-mass energies of 7, 8, and 13,Tekern -0.1em V. A resonant structure of spin-parity 0^+ is observed in the D^0 K_S^0 invariant-mass spectrum with a significance of 5.3,sigma. The mass and width of the state, modeled with a Breit-Wigner lineshape, are determined to be 2883pm11pm6,Mekern -0.1em V!/c^2 and 87_{-47}^{+22}pm6,Mekern -0.1em V respectively, where the first uncertainties are statistical and the second systematic. These properties and the quark content are consistent with those of the open-charm tetraquark state T_{cs 0}^{*}(2870)^0 observed previously in the D^+ K^- final state of the B^-rightarrow D^- D^+ K^- decay. This result confirms the existence of the T_{cs 0}^{*}(2870)^0 state in a new decay mode. The T_{cs1}^{*}(2900)^0 state, reported in the B^-rightarrow D^- D^+ K^- decay, is also searched for in the D^0 K_S^0 invariant-mass spectrum of the B^- rightarrow D^- D^0 K_S^0 decay, without finding evidence for it.
Detecting Fermi Surface Nesting Effect for Fermionic Dicke Transition by Trap Induced Localization
Recently, the statistical effect of fermionic superradiance is approved by series of experiments both in free space and in a cavity. The Pauli blocking effect can be visualized by a 1/2 scaling of Dicke transition critical pumping strength against particle number Nat for fermions in a trap. However, the Fermi surface nesting effect, which manifests the enhancement of superradiance by Fermi statistics is still very hard to be identified. Here we studied the influence of localized fermions on the trap edge when both pumping optical lattice and the trap are presented. We find due to localization, the statistical effect in superradiant transition is enhanced. Two new scalings of critical pumping strength are observed as 4/3, and 2/3 for mediate particle number, and the Pauli blocking scaling 1/3 (2d case) in large particle number limit is unaffected. Further, we find the 4/3 scaling is subject to a power law increasing with rising ratio between recoil energy and trap frequency in pumping laser direction. The divergence of this scaling of critical pumping strength against N_{rm at} in E_R/omega_xrightarrow+infty limit can be identified as the Fermi surface nesting effect. Thus we find a practical experimental scheme for visualizing the long-desired Fermi surface nesting effect with the help of trap induced localization in a two-dimensional Fermi gas in a cavity.
Focus on conceptual ideas in quantum mechanics for teacher training
In this work, we describe strategies and provide case-study activities that can be used to examine the properties of superposition, entanglement, tagging, complementarity, and measurement in quantum curricula geared for teacher training. Having a solid foundation in these conceptual ideas is critical for educators who will be adopting quantum ideas within the classroom. Yet they are some of the most difficult concepts to master. We show how one can systematically develop these conceptual foundations with thought experiments on light and with thought experiments that employ the Stern-Gerlach experiment. We emphasize the importance of computer animations in aiding the instruction on these concepts.
ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents
The massive population election simulation aims to model the preferences of specific groups in particular election scenarios. It has garnered significant attention for its potential to forecast real-world social trends. Traditional agent-based modeling (ABM) methods are constrained by their ability to incorporate complex individual background information and provide interactive prediction results. In this paper, we introduce ElectionSim, an innovative election simulation framework based on large language models, designed to support accurate voter simulations and customized distributions, together with an interactive platform to dialogue with simulated voters. We present a million-level voter pool sampled from social media platforms to support accurate individual simulation. We also introduce PPE, a poll-based presidential election benchmark to assess the performance of our framework under the U.S. presidential election scenario. Through extensive experiments and analyses, we demonstrate the effectiveness and robustness of our framework in U.S. presidential election simulations.
Quantum simulation of generic spin exchange models in Floquet-engineered Rydberg atom arrays
Although quantum simulation can give insight into elusive or intractable physical phenomena, many quantum simulators are unavoidably limited in the models they mimic. Such is also the case for atom arrays interacting via Rydberg states - a platform potentially capable of simulating any kind of spin exchange model, albeit with currently unattainable experimental capabilities. Here, we propose a new route towards simulating generic spin exchange Hamiltonians in atom arrays, using Floquet engineering with both global and local control. To demonstrate the versatility and applicability of our approach, we numerically investigate the generation of several spin exchange models which have yet to be realized in atom arrays, using only previously-demonstrated experimental capabilities. Our proposed scheme can be readily explored in many existing setups, providing a path to investigate a large class of exotic quantum spin models.
IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare
The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65.
Large language models can consistently generate high-quality content for election disinformation operations
Advances in large language models have raised concerns about their potential use in generating compelling election disinformation at scale. This study presents a two-part investigation into the capabilities of LLMs to automate stages of an election disinformation operation. First, we introduce DisElect, a novel evaluation dataset designed to measure LLM compliance with instructions to generate content for an election disinformation operation in localised UK context, containing 2,200 malicious prompts and 50 benign prompts. Using DisElect, we test 13 LLMs and find that most models broadly comply with these requests; we also find that the few models which refuse malicious prompts also refuse benign election-related prompts, and are more likely to refuse to generate content from a right-wing perspective. Secondly, we conduct a series of experiments (N=2,340) to assess the "humanness" of LLMs: the extent to which disinformation operation content generated by an LLM is able to pass as human-written. Our experiments suggest that almost all LLMs tested released since 2022 produce election disinformation operation content indiscernible by human evaluators over 50% of the time. Notably, we observe that multiple models achieve above-human levels of humanness. Taken together, these findings suggest that current LLMs can be used to generate high-quality content for election disinformation operations, even in hyperlocalised scenarios, at far lower costs than traditional methods, and offer researchers and policymakers an empirical benchmark for the measurement and evaluation of these capabilities in current and future models.
Kohn-Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice
The Kohn-Luttinger mechanism for unconventional superconductivity (SC) driven by weak repulsive electron-electron interactions on a periodic lattice is generalized to the quasicrystal (QC) via a real-space perturbative approach. The repulsive Hubbard model on the Penrose lattice is studied as an example, on which a classification of the pairing symmetries is performed and a pairing phase diagram is obtained. Two remarkable properties of these pairing states are revealed, due to the combination of the presence of the point-group symmetry and the lack of translation symmetry on this lattice. Firstly, the spin and spacial angular momenta of a Cooper pair is de-correlated: for each pairing symmetry, both spin-singlet and spin-triplet pairings are possible even in the weak-pairing limit. Secondly, the pairing states belonging to the 2D irreducible representations of the D_5 point group can be time-reversal-symmetry-breaking topological SCs carrying spontaneous bulk super current and spontaneous vortices. These two remarkable properties are general for the SCs on all QCs, and are rare on periodic lattices. Our work starts the new area of unconventional SCs driven by repulsive interactions on the QC.
Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions
We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the U(1) degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous U(1) system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.
Magnetic properties of the quasi-one-dimensional S = 1 spin chain antiferromagnet BaNiTe2O7
We report a quasi-one-dimensional S = 1 spin chain compound BaNiTe2O7. This magnetic system has been investigated by magnetic susceptibility, specific heat, and neutron powder diffraction. These results indicate that BaNiTe2O7 develops a short-range magnetic correlation around T ~ 22 K. With further cooling, an antiferromagnetic phase transition is observed at TN ~ 5.4 K. Neutron powder diffraction revealed antiferromagnetic noncollinear order with a commensurate propagation vector k = (1/2, 1, 0). The refined magnetic moment size of Ni2+ at 1.5 K is 1.84{\mu}B, and its noncollinear spin texture is confirmed by first-principles calculations. Inelastic neutron-scattering results and density functional theory calculations confirmed the quasi-one-dimensional nature of the spin systems.
Indirect measurement of atomic magneto-optical rotation via Hilbert transform
The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime.
Quarks to Cosmos: Particles and Plasma in Cosmological evolution
We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field.
Sparks of Artificial General Intelligence(AGI) in Semiconductor Material Science: Early Explorations into the Next Frontier of Generative AI-Assisted Electron Micrograph Analysis
Characterizing materials with electron micrographs poses significant challenges for automated labeling due to the complex nature of nanomaterial structures. To address this, we introduce a fully automated, end-to-end pipeline that leverages recent advances in Generative AI. It is designed for analyzing and understanding the microstructures of semiconductor materials with effectiveness comparable to that of human experts, contributing to the pursuit of Artificial General Intelligence (AGI) in nanomaterial identification. Our approach utilizes Large MultiModal Models (LMMs) such as GPT-4V, alongside text-to-image models like DALLE-3. We integrate a GPT-4 guided Visual Question Answering (VQA) method to analyze nanomaterial images, generate synthetic nanomaterial images via DALLE-3, and employ in-context learning with few-shot prompting in GPT-4V for accurate nanomaterial identification. Our method surpasses traditional techniques by enhancing the precision of nanomaterial identification and optimizing the process for high-throughput screening.
Deep Generative Models-Assisted Automated Labeling for Electron Microscopy Images Segmentation
The rapid advancement of deep learning has facilitated the automated processing of electron microscopy (EM) big data stacks. However, designing a framework that eliminates manual labeling and adapts to domain gaps remains challenging. Current research remains entangled in the dilemma of pursuing complete automation while still requiring simulations or slight manual annotations. Here we demonstrate tandem generative adversarial network (tGAN), a fully label-free and simulation-free pipeline capable of generating EM images for computer vision training. The tGAN can assimilate key features from new data stacks, thus producing a tailored virtual dataset for the training of automated EM analysis tools. Using segmenting nanoparticles for analyzing size distribution of supported catalysts as the demonstration, our findings showcased that the recognition accuracy of tGAN even exceeds the manually-labeling method by 5%. It can also be adaptively deployed to various data domains without further manual manipulation, which is verified by transfer learning from HAADF-STEM to BF-TEM. This generalizability may enable it to extend its application to a broader range of imaging characterizations, liberating microscopists and materials scientists from tedious dataset annotations.
Investigating LLMs as Voting Assistants via Contextual Augmentation: A Case Study on the European Parliament Elections 2024
Instruction-finetuned Large Language Models exhibit unprecedented Natural Language Understanding capabilities. Recent work has been exploring political biases and political reasoning capabilities in LLMs, mainly scoped in the US context. In light of the recent 2024 European Parliament elections, we are investigating if LLMs can be used as Voting Advice Applications (VAAs). We audit MISTRAL and MIXTRAL models and evaluate their accuracy in predicting the stance of political parties based on the latest "EU and I" voting assistance questionnaire. Furthermore, we explore alternatives to improve models' performance by augmenting the input context via Retrieval-Augmented Generation (RAG) relying on web search, and Self-Reflection using staged conversations that aim to re-collect relevant content from the model's internal memory. We find that MIXTRAL is highly accurate with an 82% accuracy on average. Augmenting the input context with expert-curated information can lead to a significant boost of approx. 9%, which remains an open challenge for automated approaches.
FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections
In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.
Analyzing the Influence of Fake News in the 2024 Elections: A Comprehensive Dataset
This work introduces a dataset focused on fake news in US political speeches, specifically examining racial slurs and biases. By scraping and annotating 40,000 news articles, using advanced NLP tools and human verification, we provide a nuanced understanding of misinformation in political discourse. The dataset, designed for machine learning and bias analysis, is a critical resource for researchers, policymakers, and educators. It facilitates the development of strategies against misinformation and enhances media literacy, marking a significant contribution to the study of fake news and political communication. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible for community to work on fake news identification. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible.
Sentiment is all you need to win US Presidential elections
Election speeches play an integral role in communicating the vision and mission of the candidates. From lofty promises to mud-slinging, the electoral candidate accounts for all. However, there remains an open question about what exactly wins over the voters. In this work, we used state-of-the-art natural language processing methods to study the speeches and sentiments of the Republican candidate, Donald Trump, and Democratic candidate, Joe Biden, fighting for the 2020 US Presidential election. Comparing the racial dichotomy of the United States, we analyze what led to the victory and defeat of the different candidates. We believe this work will inform the election campaigning strategy and provide a basis for communicating to diverse crowds.