1 Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization We introduce extreme summarization, a new single-document summarization task which does not favor extractive strategies and calls for an abstractive modeling approach. The idea is to create a short, one-sentence news summary answering the question "What is the article about?". We collect a real-world, large-scale dataset for this task by harvesting online articles from the British Broadcasting Corporation (BBC). We propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans. 3 authors · Aug 27, 2018
1 CiteSum: Citation Text-guided Scientific Extreme Summarization and Domain Adaptation with Limited Supervision Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers. Previous efforts on curating scientific TLDR datasets failed to scale up due to the heavy human annotation and domain expertise required. In this paper, we propose a simple yet effective approach to automatically extracting TLDR summaries for scientific papers from their citation texts. Based on the proposed approach, we create a new benchmark CiteSum without human annotation, which is around 30 times larger than the previous human-curated dataset SciTLDR. We conduct a comprehensive analysis of CiteSum, examining its data characteristics and establishing strong baselines. We further demonstrate the usefulness of CiteSum by adapting models pre-trained on CiteSum (named CITES) to new tasks and domains with limited supervision. For scientific extreme summarization, CITES outperforms most fully-supervised methods on SciTLDR without any fine-tuning and obtains state-of-the-art results with only 128 examples. For news extreme summarization, CITES achieves significant gains on XSum over its base model (not pre-trained on CiteSum), e.g., +7.2 ROUGE-1 zero-shot performance and state-of-the-art few-shot performance. For news headline generation, CITES performs the best among unsupervised and zero-shot methods on Gigaword. Our dataset and code can be found at https://github.com/morningmoni/CiteSum. 3 authors · May 12, 2022
- SemSup-XC: Semantic Supervision for Zero and Few-shot Extreme Classification Extreme classification (XC) involves predicting over large numbers of classes (thousands to millions), with real-world applications like news article classification and e-commerce product tagging. The zero-shot version of this task requires generalization to novel classes without additional supervision. In this paper, we develop SemSup-XC, a model that achieves state-of-the-art zero-shot and few-shot performance on three XC datasets derived from legal, e-commerce, and Wikipedia data. To develop SemSup-XC, we use automatically collected semantic class descriptions to represent classes and facilitate generalization through a novel hybrid matching module that matches input instances to class descriptions using a combination of semantic and lexical similarity. Trained with contrastive learning, SemSup-XC significantly outperforms baselines and establishes state-of-the-art performance on all three datasets considered, gaining up to 12 precision points on zero-shot and more than 10 precision points on one-shot tests, with similar gains for recall@10. Our ablation studies highlight the relative importance of our hybrid matching module and automatically collected class descriptions. 3 authors · Jan 26, 2023
- Keyword Extraction from Short Texts with a Text-To-Text Transfer Transformer The paper explores the relevance of the Text-To-Text Transfer Transformer language model (T5) for Polish (plT5) to the task of intrinsic and extrinsic keyword extraction from short text passages. The evaluation is carried out on the new Polish Open Science Metadata Corpus (POSMAC), which is released with this paper: a collection of 216,214 abstracts of scientific publications compiled in the CURLICAT project. We compare the results obtained by four different methods, i.e. plT5kw, extremeText, TermoPL, KeyBERT and conclude that the plT5kw model yields particularly promising results for both frequent and sparsely represented keywords. Furthermore, a plT5kw keyword generation model trained on the POSMAC also seems to produce highly useful results in cross-domain text labelling scenarios. We discuss the performance of the model on news stories and phone-based dialog transcripts which represent text genres and domains extrinsic to the dataset of scientific abstracts. Finally, we also attempt to characterize the challenges of evaluating a text-to-text model on both intrinsic and extrinsic keyword extraction. 5 authors · Sep 28, 2022
- Mapping Natural Language Commands to Web Elements The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset. 5 authors · Aug 28, 2018
- Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles Multi-document summarization is a challenging task for which there exists little large-scale datasets. We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal that Multi-XScience is well suited for abstractive models. 3 authors · Oct 27, 2020
1 NGAME: Negative Mining-aware Mini-batching for Extreme Classification Extreme Classification (XC) seeks to tag data points with the most relevant subset of labels from an extremely large label set. Performing deep XC with dense, learnt representations for data points and labels has attracted much attention due to its superiority over earlier XC methods that used sparse, hand-crafted features. Negative mining techniques have emerged as a critical component of all deep XC methods that allow them to scale to millions of labels. However, despite recent advances, training deep XC models with large encoder architectures such as transformers remains challenging. This paper identifies that memory overheads of popular negative mining techniques often force mini-batch sizes to remain small and slow training down. In response, this paper introduces NGAME, a light-weight mini-batch creation technique that offers provably accurate in-batch negative samples. This allows training with larger mini-batches offering significantly faster convergence and higher accuracies than existing negative sampling techniques. NGAME was found to be up to 16% more accurate than state-of-the-art methods on a wide array of benchmark datasets for extreme classification, as well as 3% more accurate at retrieving search engine queries in response to a user webpage visit to show personalized ads. In live A/B tests on a popular search engine, NGAME yielded up to 23% gains in click-through-rates. 19 authors · Jul 10, 2022
- Large-Scale Multi-Label Text Classification on EU Legislation We consider Large-Scale Multi-Label Text Classification (LMTC) in the legal domain. We release a new dataset of 57k legislative documents from EURLEX, annotated with ~4.3k EUROVOC labels, which is suitable for LMTC, few- and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with label-wise attention perform better than other current state of the art methods. Domain-specific WORD2VEC and context-sensitive ELMO embeddings further improve performance. We also find that considering only particular zones of the documents is sufficient. This allows us to bypass BERT's maximum text length limit and fine-tune BERT, obtaining the best results in all but zero-shot learning cases. 4 authors · Jun 5, 2019
1 VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area. 3 authors · Jul 31, 2023
43 TextAtlas5M: A Large-scale Dataset for Dense Text Image Generation Text-conditioned image generation has gained significant attention in recent years and are processing increasingly longer and comprehensive text prompt. In everyday life, dense and intricate text appears in contexts like advertisements, infographics, and signage, where the integration of both text and visuals is essential for conveying complex information. However, despite these advances, the generation of images containing long-form text remains a persistent challenge, largely due to the limitations of existing datasets, which often focus on shorter and simpler text. To address this gap, we introduce TextAtlas5M, a novel dataset specifically designed to evaluate long-text rendering in text-conditioned image generation. Our dataset consists of 5 million long-text generated and collected images across diverse data types, enabling comprehensive evaluation of large-scale generative models on long-text image generation. We further curate 3000 human-improved test set TextAtlasEval across 3 data domains, establishing one of the most extensive benchmarks for text-conditioned generation. Evaluations suggest that the TextAtlasEval benchmarks present significant challenges even for the most advanced proprietary models (e.g. GPT4o with DallE-3), while their open-source counterparts show an even larger performance gap. These evidences position TextAtlas5M as a valuable dataset for training and evaluating future-generation text-conditioned image generation models. 12 authors · Feb 11 2
- Automatic Construction of a Korean Toxic Instruction Dataset for Ethical Tuning of Large Language Models Caution: this paper may include material that could be offensive or distressing. The advent of Large Language Models (LLMs) necessitates the development of training approaches that mitigate the generation of unethical language and aptly manage toxic user queries. Given the challenges related to human labor and the scarcity of data, we present KoTox, comprising 39K unethical instruction-output pairs. This collection of automatically generated toxic instructions refines the training of LLMs and establishes a foundational framework for improving LLMs' ethical awareness and response to various toxic inputs, promoting more secure and responsible interactions in Natural Language Processing (NLP) applications. 4 authors · Nov 29, 2023
- Extreme Multi-Label Legal Text Classification: A case study in EU Legislation We consider the task of Extreme Multi-Label Text Classification (XMTC) in the legal domain. We release a new dataset of 57k legislative documents from EURLEX, the European Union's public document database, annotated with concepts from EUROVOC, a multidisciplinary thesaurus. The dataset is substantially larger than previous EURLEX datasets and suitable for XMTC, few-shot and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with self-attention outperform the current multi-label state-of-the-art methods, which employ label-wise attention. Replacing CNNs with BIGRUs in label-wise attention networks leads to the best overall performance. 5 authors · May 26, 2019
- TextCaps: a Dataset for Image Captioning with Reading Comprehension Image descriptions can help visually impaired people to quickly understand the image content. While we made significant progress in automatically describing images and optical character recognition, current approaches are unable to include written text in their descriptions, although text is omnipresent in human environments and frequently critical to understand our surroundings. To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images. Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase, requiring spatial, semantic, and visual reasoning between multiple text tokens and visual entities, such as objects. We study baselines and adapt existing approaches to this new task, which we refer to as image captioning with reading comprehension. Our analysis with automatic and human studies shows that our new TextCaps dataset provides many new technical challenges over previous datasets. 4 authors · Mar 23, 2020
- Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus Large language models have led to remarkable progress on many NLP tasks, and researchers are turning to ever-larger text corpora to train them. Some of the largest corpora available are made by scraping significant portions of the internet, and are frequently introduced with only minimal documentation. In this work we provide some of the first documentation for the Colossal Clean Crawled Corpus (C4; Raffel et al., 2020), a dataset created by applying a set of filters to a single snapshot of Common Crawl. We begin by investigating where the data came from, and find a significant amount of text from unexpected sources like patents and US military websites. Then we explore the content of the text itself, and find machine-generated text (e.g., from machine translation systems) and evaluation examples from other benchmark NLP datasets. To understand the impact of the filters applied to create this dataset, we evaluate the text that was removed, and show that blocklist filtering disproportionately removes text from and about minority individuals. Finally, we conclude with some recommendations for how to created and document web-scale datasets from a scrape of the internet. 8 authors · Apr 18, 2021
- S2ORC: The Semantic Scholar Open Research Corpus We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text. 5 authors · Nov 7, 2019
- Dense Text Retrieval based on Pretrained Language Models: A Survey Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval. 4 authors · Nov 27, 2022
2 Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach Zero-shot text classification (0Shot-TC) is a challenging NLU problem to which little attention has been paid by the research community. 0Shot-TC aims to associate an appropriate label with a piece of text, irrespective of the text domain and the aspect (e.g., topic, emotion, event, etc.) described by the label. And there are only a few articles studying 0Shot-TC, all focusing only on topical categorization which, we argue, is just the tip of the iceberg in 0Shot-TC. In addition, the chaotic experiments in literature make no uniform comparison, which blurs the progress. This work benchmarks the 0Shot-TC problem by providing unified datasets, standardized evaluations, and state-of-the-art baselines. Our contributions include: i) The datasets we provide facilitate studying 0Shot-TC relative to conceptually different and diverse aspects: the ``topic'' aspect includes ``sports'' and ``politics'' as labels; the ``emotion'' aspect includes ``joy'' and ``anger''; the ``situation'' aspect includes ``medical assistance'' and ``water shortage''. ii) We extend the existing evaluation setup (label-partially-unseen) -- given a dataset, train on some labels, test on all labels -- to include a more challenging yet realistic evaluation label-fully-unseen 0Shot-TC (Chang et al., 2008), aiming at classifying text snippets without seeing task specific training data at all. iii) We unify the 0Shot-TC of diverse aspects within a textual entailment formulation and study it this way. Code & Data: https://github.com/yinwenpeng/BenchmarkingZeroShot 3 authors · Aug 31, 2019
- The ROOTS Search Tool: Data Transparency for LLMs ROOTS is a 1.6TB multilingual text corpus developed for the training of BLOOM, currently the largest language model explicitly accompanied by commensurate data governance efforts. In continuation of these efforts, we present the ROOTS Search Tool: a search engine over the entire ROOTS corpus offering both fuzzy and exact search capabilities. ROOTS is the largest corpus to date that can be investigated this way. The ROOTS Search Tool is open-sourced and available on Hugging Face Spaces. We describe our implementation and the possible use cases of our tool. 8 authors · Feb 27, 2023
- DeepLearningBrasil@LT-EDI-2023: Exploring Deep Learning Techniques for Detecting Depression in Social Media Text In this paper, we delineate the strategy employed by our team, DeepLearningBrasil, which secured us the first place in the shared task DepSign-LT-EDI@RANLP-2023, achieving a 47.0% Macro F1-Score and a notable 2.4% advantage. The task was to classify social media texts into three distinct levels of depression - "not depressed," "moderately depressed," and "severely depressed." Leveraging the power of the RoBERTa and DeBERTa models, we further pre-trained them on a collected Reddit dataset, specifically curated from mental health-related Reddit's communities (Subreddits), leading to an enhanced understanding of nuanced mental health discourse. To address lengthy textual data, we used truncation techniques that retained the essence of the content by focusing on its beginnings and endings. Our model was robust against unbalanced data by incorporating sample weights into the loss. Cross-validation and ensemble techniques were then employed to combine our k-fold trained models, delivering an optimal solution. The accompanying code is made available for transparency and further development. 5 authors · Nov 8, 2023
- Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified. 8 authors · Apr 2, 2024
1 TLDR9+: A Large Scale Resource for Extreme Summarization of Social Media Posts Recent models in developing summarization systems consist of millions of parameters and the model performance is highly dependent on the abundance of training data. While most existing summarization corpora contain data in the order of thousands to one million, generation of large-scale summarization datasets in order of couple of millions is yet to be explored. Practically, more data is better at generalizing the training patterns to unseen data. In this paper, we introduce TLDR9+ -- a large-scale summarization dataset -- containing over 9 million training instances extracted from Reddit discussion forum (https://github.com/sajastu/reddit_collector). This dataset is specifically gathered to perform extreme summarization (i.e., generating one-sentence summary in high compression and abstraction) and is more than twice larger than the previously proposed dataset. We go one step further and with the help of human annotations, we distill a more fine-grained dataset by sampling High-Quality instances from TLDR9+ and call it TLDRHQ dataset. We further pinpoint different state-of-the-art summarization models on our proposed datasets. 4 authors · Oct 3, 2021
- Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature. 3 authors · Jul 12, 2021
1 AnyText2: Visual Text Generation and Editing With Customizable Attributes As the text-to-image (T2I) domain progresses, generating text that seamlessly integrates with visual content has garnered significant attention. However, even with accurate text generation, the inability to control font and color can greatly limit certain applications, and this issue remains insufficiently addressed. This paper introduces AnyText2, a novel method that enables precise control over multilingual text attributes in natural scene image generation and editing. Our approach consists of two main components. First, we propose a WriteNet+AttnX architecture that injects text rendering capabilities into a pre-trained T2I model. Compared to its predecessor, AnyText, our new approach not only enhances image realism but also achieves a 19.8% increase in inference speed. Second, we explore techniques for extracting fonts and colors from scene images and develop a Text Embedding Module that encodes these text attributes separately as conditions. As an extension of AnyText, this method allows for customization of attributes for each line of text, leading to improvements of 3.3% and 9.3% in text accuracy for Chinese and English, respectively. Through comprehensive experiments, we demonstrate the state-of-the-art performance of our method. The code and model will be made open-source in https://github.com/tyxsspa/AnyText2. 3 authors · Nov 21, 2024
1 AWESOME: GPU Memory-constrained Long Document Summarization using Memory Mechanism and Global Salient Content Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divide-and-conquer strategies. The former reduces theoretical time complexity, but is still memory-heavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, transcripts, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a similar or smaller GPU memory footprint. 2 authors · May 24, 2023
- Cross-Domain Robustness of Transformer-based Keyphrase Generation Modern models for text generation show state-of-the-art results in many natural language processing tasks. In this work, we explore the effectiveness of abstractive text summarization models for keyphrase selection. A list of keyphrases is an important element of a text in databases and repositories of electronic documents. In our experiments, abstractive text summarization models fine-tuned for keyphrase generation show quite high results for a target text corpus. However, in most cases, the zero-shot performance on other corpora and domains is significantly lower. We investigate cross-domain limitations of abstractive text summarization models for keyphrase generation. We present an evaluation of the fine-tuned BART models for the keyphrase selection task across six benchmark corpora for keyphrase extraction including scientific texts from two domains and news texts. We explore the role of transfer learning between different domains to improve the BART model performance on small text corpora. Our experiments show that preliminary fine-tuning on out-of-domain corpora can be effective under conditions of a limited number of samples. 2 authors · Dec 17, 2023
25 Data Engineering for Scaling Language Models to 128K Context We study the continual pretraining recipe for scaling language models' context lengths to 128K, with a focus on data engineering. We hypothesize that long context modeling, in particular the ability to utilize information at arbitrary input locations, is a capability that is mostly already acquired through large-scale pretraining, and that this capability can be readily extended to contexts substantially longer than seen during training~(e.g., 4K to 128K) through lightweight continual pretraining on appropriate data mixture. We investigate the quantity and quality of the data for continual pretraining: (1) for quantity, we show that 500 million to 5 billion tokens are enough to enable the model to retrieve information anywhere within the 128K context; (2) for quality, our results equally emphasize domain balance and length upsampling. Concretely, we find that naively upsampling longer data on certain domains like books, a common practice of existing work, gives suboptimal performance, and that a balanced domain mixture is important. We demonstrate that continual pretraining of the full model on 1B-5B tokens of such data is an effective and affordable strategy for scaling the context length of language models to 128K. Our recipe outperforms strong open-source long-context models and closes the gap to frontier models like GPT-4 128K. 7 authors · Feb 15, 2024 7
2 Precise Zero-Shot Dense Retrieval without Relevance Labels While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance label is available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a query, HyDE first zero-shot instructs an instruction-following language model (e.g. InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is unreal and may contain false details. Then, an unsupervised contrastively learned encoder~(e.g. Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, where similar real documents are retrieved based on vector similarity. This second step ground the generated document to the actual corpus, with the encoder's dense bottleneck filtering out the incorrect details. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja). 4 authors · Dec 20, 2022
- HTLM: Hyper-Text Pre-Training and Prompting of Language Models We introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research. 7 authors · Jul 14, 2021
2 Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models This report describes the training dataset creation and recipe behind the family of arctic-embed text embedding models (a set of five models ranging from 22 to 334 million parameters with weights open-sourced under an Apache-2 license). At the time of their release, each model achieved state-of-the-art retrieval accuracy for models of their size on the MTEB Retrieval leaderboard, with the largest model, arctic-embed-l outperforming closed source embedding models such as Cohere's embed-v3 and Open AI's text-embed-3-large. In addition to the details of our training recipe, we have provided several informative ablation studies, which we believe are the cause of our model performance. 4 authors · May 8, 2024
87 Textbooks Are All You Need II: phi-1.5 technical report We continue the investigation into the power of smaller Transformer-based language models as initiated by TinyStories -- a 10 million parameter model that can produce coherent English -- and the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to generate ``textbook quality" data as a way to enhance the learning process compared to traditional web data. We follow the ``Textbooks Are All You Need" approach, focusing this time on common sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5, with performance on natural language tasks comparable to models 5x larger, and surpassing most non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good -- such as the ability to ``think step by step" or perform some rudimentary in-context learning -- and bad, including hallucinations and the potential for toxic and biased generations -- encouragingly though, we are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to promote further research on these urgent topics. 6 authors · Sep 11, 2023 5
1 Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace. 5 authors · Dec 3, 2024
- Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization This paper presents Z-Code++, a new pre-trained language model optimized for abstractive text summarization. The model extends the state of the art encoder-decoder model using three techniques. First, we use a two-phase pre-training process to improve model's performance on low-resource summarization tasks. The model is first pre-trained using text corpora for language understanding, and then is continually pre-trained on summarization corpora for grounded text generation. Second, we replace self-attention layers in the encoder with disentangled attention layers, where each word is represented using two vectors that encode its content and position, respectively. Third, we use fusion-in-encoder, a simple yet effective method of encoding long sequences in a hierarchical manner. Z-Code++ creates new state of the art on 9 out of 13 text summarization tasks across 5 languages. Our model is parameter-efficient in that it outperforms the 600x larger PaLM-540B on XSum, and the finetuned 200x larger GPT3-175B on SAMSum. In zero-shot and few-shot settings, our model substantially outperforms the competing models. 14 authors · Aug 20, 2022
1 Dense X Retrieval: What Retrieval Granularity Should We Use? Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information. 8 authors · Dec 11, 2023
- WikiHow: A Large Scale Text Summarization Dataset Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it. 2 authors · Oct 18, 2018
- Deepfake Text Detection in the Wild Recent advances in large language models have enabled them to reach a level of text generation comparable to that of humans. These models show powerful capabilities across a wide range of content, including news article writing, story generation, and scientific writing. Such capability further narrows the gap between human-authored and machine-generated texts, highlighting the importance of deepfake text detection to avoid potential risks such as fake news propagation and plagiarism. However, previous work has been limited in that they testify methods on testbed of specific domains or certain language models. In practical scenarios, the detector faces texts from various domains or LLMs without knowing their sources. To this end, we build a wild testbed by gathering texts from various human writings and deepfake texts generated by different LLMs. Human annotators are only slightly better than random guessing at identifying machine-generated texts. Empirical results on automatic detection methods further showcase the challenges of deepfake text detection in a wild testbed. In addition, out-of-distribution poses a greater challenge for a detector to be employed in realistic application scenarios. We release our resources at https://github.com/yafuly/DeepfakeTextDetect. 8 authors · May 22, 2023 1
- Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content Detection in Multilingual Heterogeneous Web Data As demand for large corpora increases with the size of current state-of-the-art language models, using web data as the main part of the pre-training corpus for these models has become a ubiquitous practice. This, in turn, has introduced an important challenge for NLP practitioners, as they are now confronted with the task of developing highly optimized models and pipelines for pre-processing large quantities of textual data, which implies, effectively classifying and filtering multilingual, heterogeneous and noisy data, at web scale. One of the main components of this pre-processing step for the pre-training corpora of large language models, is the removal of adult and harmful content. In this paper we explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data. We first show how traditional methods in harmful content detection, that seemingly perform quite well in small and specialized datasets quickly break down when confronted with heterogeneous noisy web data. We then resort to using a perplexity based approach but with a twist: Instead of using a so-called "clean" corpus to train a small language model and then use perplexity so select the documents with low perplexity, i.e., the documents that resemble this so-called "clean" corpus the most. We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold. This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity and will also allow us to obtain higher precision than with the traditional classification methods for detecting adult and harmful content. 4 authors · Dec 20, 2022
23 mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval We present systematic efforts in building long-context multilingual text representation model (TRM) and reranker from scratch for text retrieval. We first introduce a text encoder (base size) enhanced with RoPE and unpadding, pre-trained in a native 8192-token context (longer than 512 of previous multilingual encoders). Then we construct a hybrid TRM and a cross-encoder reranker by contrastive learning. Evaluations show that our text encoder outperforms the same-sized previous state-of-the-art XLM-R. Meanwhile, our TRM and reranker match the performance of large-sized state-of-the-art BGE-M3 models and achieve better results on long-context retrieval benchmarks. Further analysis demonstrate that our proposed models exhibit higher efficiency during both training and inference. We believe their efficiency and effectiveness could benefit various researches and industrial applications. 13 authors · Jul 28, 2024 4
- WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans In recent years, the widespread use of social media has led to an increase in the generation of toxic and offensive content on online platforms. In response, social media platforms have worked on developing automatic detection methods and employing human moderators to cope with this deluge of offensive content. While various state-of-the-art statistical models have been applied to detect toxic posts, there are only a few studies that focus on detecting the words or expressions that make a post offensive. This motivates the organization of the SemEval-2021 Task 5: Toxic Spans Detection competition, which has provided participants with a dataset containing toxic spans annotation in English posts. In this paper, we present the WLV-RIT entry for the SemEval-2021 Task 5. Our best performing neural transformer model achieves an 0.68 F1-Score. Furthermore, we develop an open-source framework for multilingual detection of offensive spans, i.e., MUDES, based on neural transformers that detect toxic spans in texts. 4 authors · Apr 9, 2021
- T2Vs Meet VLMs: A Scalable Multimodal Dataset for Visual Harmfulness Recognition To address the risks of encountering inappropriate or harmful content, researchers managed to incorporate several harmful contents datasets with machine learning methods to detect harmful concepts. However, existing harmful datasets are curated by the presence of a narrow range of harmful objects, and only cover real harmful content sources. This hinders the generalizability of methods based on such datasets, potentially leading to misjudgments. Therefore, we propose a comprehensive harmful dataset, Visual Harmful Dataset 11K (VHD11K), consisting of 10,000 images and 1,000 videos, crawled from the Internet and generated by 4 generative models, across a total of 10 harmful categories covering a full spectrum of harmful concepts with nontrivial definition. We also propose a novel annotation framework by formulating the annotation process as a multi-agent Visual Question Answering (VQA) task, having 3 different VLMs "debate" about whether the given image/video is harmful, and incorporating the in-context learning strategy in the debating process. Therefore, we can ensure that the VLMs consider the context of the given image/video and both sides of the arguments thoroughly before making decisions, further reducing the likelihood of misjudgments in edge cases. Evaluation and experimental results demonstrate that (1) the great alignment between the annotation from our novel annotation framework and those from human, ensuring the reliability of VHD11K; (2) our full-spectrum harmful dataset successfully identifies the inability of existing harmful content detection methods to detect extensive harmful contents and improves the performance of existing harmfulness recognition methods; (3) VHD11K outperforms the baseline dataset, SMID, as evidenced by the superior improvement in harmfulness recognition methods. The complete dataset and code can be found at https://github.com/nctu-eva-lab/VHD11K. 4 authors · Sep 29, 2024
- Improving Embedding Accuracy for Document Retrieval Using Entity Relationship Maps and Model-Aware Contrastive Sampling In this paper we present APEX-Embedding-7B (Advanced Processing for Epistemic eXtraction), a 7-billion parameter decoder-only text Feature Extraction Model, specifically designed for Document Retrieval-Augmented Generation (RAG) tasks. Our approach employs two training techniques that yield an emergent improvement in factual focus: (1) Pre-convergence interrupted fine-tuning using Structured Entity Relationship Maps as training data input: designed to shift the model's attention and create a bias towards factual content rather than semantic style - this enhances plain text performance despite not being directly trained for it; and (2) Model-Aware Contrastive Sampling, creating a balanced and evenly distributed collation map of hard and soft negatives directly informed by the base model's competency. This combined methodology yields significant improvements, enhancing plain text query/document pair retrieval to achieve an absolute rank@1 accuracy of 90.86% (an increase of 6.26% compared to the next leading model) in our evaluation, and reducing training data input context size by an average of 37.71% compared to plain text for both queries and document texts. Based on our evaluations, our model establishes a new state-of-the-art standard in text feature extraction for longer context document retrieval tasks. 1 authors · Oct 8, 2024
34 Copy Is All You Need The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed.} 5 authors · Jul 13, 2023 4
- TLDR: Extreme Summarization of Scientific Documents We introduce TLDR generation, a new form of extreme summarization, for scientific papers. TLDR generation involves high source compression and requires expert background knowledge and understanding of complex domain-specific language. To facilitate study on this task, we introduce SciTLDR, a new multi-target dataset of 5.4K TLDRs over 3.2K papers. SciTLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden. We propose CATTS, a simple yet effective learning strategy for generating TLDRs that exploits titles as an auxiliary training signal. CATTS improves upon strong baselines under both automated metrics and human evaluations. Data and code are publicly available at https://github.com/allenai/scitldr. 4 authors · Apr 30, 2020
- HU at SemEval-2024 Task 8A: Can Contrastive Learning Learn Embeddings to Detect Machine-Generated Text? This paper describes our system developed for SemEval-2024 Task 8, "Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection." Machine-generated texts have been one of the main concerns due to the use of large language models (LLM) in fake text generation, phishing, cheating in exams, or even plagiarizing copyright materials. A lot of systems have been developed to detect machine-generated text. Nonetheless, the majority of these systems rely on the text-generating model, a limitation that is impractical in real-world scenarios, as it's often impossible to know which specific model the user has used for text generation. In this work, we propose a single model based on contrastive learning, which uses ~40% of the baseline's parameters (149M vs. 355M) but shows a comparable performance on the test dataset (21st out of 137 participants). Our key finding is that even without an ensemble of multiple models, a single base model can have comparable performance with the help of data augmentation and contrastive learning. 2 authors · Feb 18, 2024
- RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text In recent years, large neural networks for natural language generation (NLG) have made leaps and bounds in their ability to generate fluent text. However, the tasks of evaluating quality differences between NLG systems and understanding how humans perceive the generated text remain both crucial and difficult. In this system demonstration, we present Real or Fake Text (RoFT), a website that tackles both of these challenges by inviting users to try their hand at detecting machine-generated text in a variety of domains. We introduce a novel evaluation task based on detecting the boundary at which a text passage that starts off human-written transitions to being machine-generated. We show preliminary results of using RoFT to evaluate detection of machine-generated news articles. 4 authors · Oct 6, 2020
- FarFetched: Entity-centric Reasoning and Claim Validation for the Greek Language based on Textually Represented Environments Our collective attention span is shortened by the flood of online information. With FarFetched, we address the need for automated claim validation based on the aggregated evidence derived from multiple online news sources. We introduce an entity-centric reasoning framework in which latent connections between events, actions, or statements are revealed via entity mentions and represented in a graph database. Using entity linking and semantic similarity, we offer a way for collecting and combining information from diverse sources in order to generate evidence relevant to the user's claim. Then, we leverage textual entailment recognition to quantitatively determine whether this assertion is credible, based on the created evidence. Our approach tries to fill the gap in automated claim validation for less-resourced languages and is showcased on the Greek language, complemented by the training of relevant semantic textual similarity (STS) and natural language inference (NLI) models that are evaluated on translated versions of common benchmarks. 4 authors · Jul 13, 2024
1 Can Humans Identify Domains? Textual domain is a crucial property within the Natural Language Processing (NLP) community due to its effects on downstream model performance. The concept itself is, however, loosely defined and, in practice, refers to any non-typological property, such as genre, topic, medium or style of a document. We investigate the core notion of domains via human proficiency in identifying related intrinsic textual properties, specifically the concepts of genre (communicative purpose) and topic (subject matter). We publish our annotations in *TGeGUM*: A collection of 9.1k sentences from the GUM dataset (Zeldes, 2017) with single sentence and larger context (i.e., prose) annotations for one of 11 genres (source type), and its topic/subtopic as per the Dewey Decimal library classification system (Dewey, 1979), consisting of 10/100 hierarchical topics of increased granularity. Each instance is annotated by three annotators, for a total of 32.7k annotations, allowing us to examine the level of human disagreement and the relative difficulty of each annotation task. With a Fleiss' kappa of at most 0.53 on the sentence level and 0.66 at the prose level, it is evident that despite the ubiquity of domains in NLP, there is little human consensus on how to define them. By training classifiers to perform the same task, we find that this uncertainty also extends to NLP models. 6 authors · Apr 2, 2024
9 DarkBERT: A Language Model for the Dark Side of the Internet Recent research has suggested that there are clear differences in the language used in the Dark Web compared to that of the Surface Web. As studies on the Dark Web commonly require textual analysis of the domain, language models specific to the Dark Web may provide valuable insights to researchers. In this work, we introduce DarkBERT, a language model pretrained on Dark Web data. We describe the steps taken to filter and compile the text data used to train DarkBERT to combat the extreme lexical and structural diversity of the Dark Web that may be detrimental to building a proper representation of the domain. We evaluate DarkBERT and its vanilla counterpart along with other widely used language models to validate the benefits that a Dark Web domain specific model offers in various use cases. Our evaluations show that DarkBERT outperforms current language models and may serve as a valuable resource for future research on the Dark Web. 6 authors · May 15, 2023 16
- ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic Recent text-to-image matching models apply contrastive learning to large corpora of uncurated pairs of images and sentences. While such models can provide a powerful score for matching and subsequent zero-shot tasks, they are not capable of generating caption given an image. In this work, we repurpose such models to generate a descriptive text given an image at inference time, without any further training or tuning steps. This is done by combining the visual-semantic model with a large language model, benefiting from the knowledge in both web-scale models. The resulting captions are much less restrictive than those obtained by supervised captioning methods. Moreover, as a zero-shot learning method, it is extremely flexible and we demonstrate its ability to perform image arithmetic in which the inputs can be either images or text, and the output is a sentence. This enables novel high-level vision capabilities such as comparing two images or solving visual analogy tests. Our code is available at: https://github.com/YoadTew/zero-shot-image-to-text. 4 authors · Nov 29, 2021
16 Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license. 5 authors · Jun 24, 2024 3
- BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization Most existing text summarization datasets are compiled from the news domain, where summaries have a flattened discourse structure. In such datasets, summary-worthy content often appears in the beginning of input articles. Moreover, large segments from input articles are present verbatim in their respective summaries. These issues impede the learning and evaluation of systems that can understand an article's global content structure as well as produce abstractive summaries with high compression ratio. In this work, we present a novel dataset, BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Compared to existing summarization datasets, BIGPATENT has the following properties: i) summaries contain a richer discourse structure with more recurring entities, ii) salient content is evenly distributed in the input, and iii) lesser and shorter extractive fragments are present in the summaries. Finally, we train and evaluate baselines and popular learning models on BIGPATENT to shed light on new challenges and motivate future directions for summarization research. 3 authors · Jun 9, 2019
- Alt-Text with Context: Improving Accessibility for Images on Twitter In this work we present an approach for generating alternative text (or alt-text) descriptions for images shared on social media, specifically Twitter. More than just a special case of image captioning, alt-text is both more literally descriptive and context-specific. Also critically, images posted to Twitter are often accompanied by user-written text that despite not necessarily describing the image may provide useful context that if properly leveraged can be informative. We address this task with a multimodal model that conditions on both textual information from the associated social media post as well as visual signal from the image, and demonstrate that the utility of these two information sources stacks. We put forward a new dataset of 371k images paired with alt-text and tweets scraped from Twitter and evaluate on it across a variety of automated metrics as well as human evaluation. We show that our approach of conditioning on both tweet text and visual information significantly outperforms prior work, by more than 2x on BLEU@4. 4 authors · May 24, 2023
- Challenges in Domain-Specific Abstractive Summarization and How to Overcome them Large Language Models work quite well with general-purpose data and many tasks in Natural Language Processing. However, they show several limitations when used for a task such as domain-specific abstractive text summarization. This paper identifies three of those limitations as research problems in the context of abstractive text summarization: 1) Quadratic complexity of transformer-based models with respect to the input text length; 2) Model Hallucination, which is a model's ability to generate factually incorrect text; and 3) Domain Shift, which happens when the distribution of the model's training and test corpus is not the same. Along with a discussion of the open research questions, this paper also provides an assessment of existing state-of-the-art techniques relevant to domain-specific text summarization to address the research gaps. 4 authors · Jul 3, 2023
- On the State of German (Abstractive) Text Summarization With recent advancements in the area of Natural Language Processing, the focus is slowly shifting from a purely English-centric view towards more language-specific solutions, including German. Especially practical for businesses to analyze their growing amount of textual data are text summarization systems, which transform long input documents into compressed and more digestible summary texts. In this work, we assess the particular landscape of German abstractive text summarization and investigate the reasons why practically useful solutions for abstractive text summarization are still absent in industry. Our focus is two-fold, analyzing a) training resources, and b) publicly available summarization systems. We are able to show that popular existing datasets exhibit crucial flaws in their assumptions about the original sources, which frequently leads to detrimental effects on system generalization and evaluation biases. We confirm that for the most popular training dataset, MLSUM, over 50% of the training set is unsuitable for abstractive summarization purposes. Furthermore, available systems frequently fail to compare to simple baselines, and ignore more effective and efficient extractive summarization approaches. We attribute poor evaluation quality to a variety of different factors, which are investigated in more detail in this work: A lack of qualitative (and diverse) gold data considered for training, understudied (and untreated) positional biases in some of the existing datasets, and the lack of easily accessible and streamlined pre-processing strategies or analysis tools. We provide a comprehensive assessment of available models on the cleaned datasets, and find that this can lead to a reduction of more than 20 ROUGE-1 points during evaluation. The code for dataset filtering and reproducing results can be found online at https://github.com/dennlinger/summaries 3 authors · Jan 17, 2023
1 LongLaMP: A Benchmark for Personalized Long-form Text Generation Long-text generation is seemingly ubiquitous in real-world applications of large language models such as generating an email or writing a review. Despite the fundamental importance and prevalence of long-text generation in many practical applications, existing work on personalized generation has focused on the generation of very short text. To overcome these limitations, we study the problem of personalized long-text generation, that is, generating long-text that is personalized for a specific user while being practically useful for the vast majority of real-world applications that naturally require the generation of longer text. In this work, we demonstrate the importance of user-specific personalization for long-text generation tasks and develop the Long-text Language Model Personalization (LongLaMP) Benchmark. LongLaMP provides a comprehensive and diverse evaluation framework for personalized long-text generation. Extensive experiments on LongLaMP for zero-shot and fine-tuned language tasks demonstrate the effectiveness of the proposed benchmark and its utility for developing and evaluating techniques for personalized long-text generation across a wide variety of long-text generation tasks. The results highlight the importance of personalization across a wide variety of long-text generation tasks. Finally, we release the benchmark for others to use for this important problem. 12 authors · Jun 26, 2024
- P+: Extended Textual Conditioning in Text-to-Image Generation We introduce an Extended Textual Conditioning space in text-to-image models, referred to as P+. This space consists of multiple textual conditions, derived from per-layer prompts, each corresponding to a layer of the denoising U-net of the diffusion model. We show that the extended space provides greater disentangling and control over image synthesis. We further introduce Extended Textual Inversion (XTI), where the images are inverted into P+, and represented by per-layer tokens. We show that XTI is more expressive and precise, and converges faster than the original Textual Inversion (TI) space. The extended inversion method does not involve any noticeable trade-off between reconstruction and editability and induces more regular inversions. We conduct a series of extensive experiments to analyze and understand the properties of the new space, and to showcase the effectiveness of our method for personalizing text-to-image models. Furthermore, we utilize the unique properties of this space to achieve previously unattainable results in object-style mixing using text-to-image models. Project page: https://prompt-plus.github.io 4 authors · Mar 16, 2023
- Open Vocabulary Extreme Classification Using Generative Models The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set. The label vocabulary is typically defined in advance by domain experts and assumed to capture all necessary tags. However in real world scenarios this label set, although large, is often incomplete and experts frequently need to refine it. To develop systems that simplify this process, we introduce the task of open vocabulary XMC (OXMC): given a piece of content, predict a set of labels, some of which may be outside of the known tag set. Hence, in addition to not having training data for some labels - as is the case in zero-shot classification - models need to invent some labels on-the-fly. We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order. We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels. 7 authors · May 11, 2022
1 Curriculum-guided Abstractive Summarization for Mental Health Online Posts Automatically generating short summaries from users' online mental health posts could save counselors' reading time and reduce their fatigue so that they can provide timely responses to those seeking help for improving their mental state. Recent Transformers-based summarization models have presented a promising approach to abstractive summarization. They go beyond sentence selection and extractive strategies to deal with more complicated tasks such as novel word generation and sentence paraphrasing. Nonetheless, these models have a prominent shortcoming; their training strategy is not quite efficient, which restricts the model's performance. In this paper, we include a curriculum learning approach to reweigh the training samples, bringing about an efficient learning procedure. We apply our model on extreme summarization dataset of MentSum posts -- a dataset of mental health related posts from Reddit social media. Compared to the state-of-the-art model, our proposed method makes substantial gains in terms of Rouge and Bertscore evaluation metrics, yielding 3.5% (Rouge-1), 10.4% (Rouge-2), and 4.7% (Rouge-L), 1.5% (Bertscore) relative improvements. 4 authors · Feb 2, 2023
- Automatic Summarization of Long Documents A vast amount of textual data is added to the internet daily, making utilization and interpretation of such data difficult and cumbersome. As a result, automatic text summarization is crucial for extracting relevant information, saving precious reading time. Although many transformer-based models excel in summarization, they are constrained by their input size, preventing them from processing texts longer than their context size. This study introduces three novel algorithms that allow any LLM to efficiently overcome its input size limitation, effectively utilizing its full potential without any architectural modifications. We test our algorithms on texts with more than 70,000 words, and our experiments show a significant increase in BERTScore with competitive ROUGE scores. 2 authors · Oct 8, 2024
- SciFive: a text-to-text transformer model for biomedical literature In this report, we introduce SciFive, a domain-specific T5 model that has been pre-trained on large biomedical corpora. Our model outperforms the current SOTA methods (i.e. BERT, BioBERT, Base T5) on tasks in named entity relation, relation extraction, natural language inference, and question-answering. We show that text-generation methods have significant potential in a broad array of biomedical NLP tasks, particularly those requiring longer, more complex outputs. Our results support the exploration of more difficult text generation tasks and the development of new methods in this area 7 authors · May 28, 2021
1 Text Embeddings by Weakly-Supervised Contrastive Pre-training This paper presents E5, a family of state-of-the-art text embeddings that transfer well to a wide range of tasks. The model is trained in a contrastive manner with weak supervision signals from our curated large-scale text pair dataset (called CCPairs). E5 can be readily used as a general-purpose embedding model for any tasks requiring a single-vector representation of texts such as retrieval, clustering, and classification, achieving strong performance in both zero-shot and fine-tuned settings. We conduct extensive evaluations on 56 datasets from the BEIR and MTEB benchmarks. For zero-shot settings, E5 is the first model that outperforms the strong BM25 baseline on the BEIR retrieval benchmark without using any labeled data. When fine-tuned, E5 obtains the best results on the MTEB benchmark, beating existing embedding models with 40x more parameters. 8 authors · Dec 7, 2022
- Extreme Multi-Label Skill Extraction Training using Large Language Models Online job ads serve as a valuable source of information for skill requirements, playing a crucial role in labor market analysis and e-recruitment processes. Since such ads are typically formatted in free text, natural language processing (NLP) technologies are required to automatically process them. We specifically focus on the task of detecting skills (mentioned literally, or implicitly described) and linking them to a large skill ontology, making it a challenging case of extreme multi-label classification (XMLC). Given that there is no sizable labeled (training) dataset are available for this specific XMLC task, we propose techniques to leverage general Large Language Models (LLMs). We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction, and present a contrastive learning strategy that proves effective in the task. Our results across three skill extraction benchmarks show a consistent increase of between 15 to 25 percentage points in R-Precision@5 compared to previously published results that relied solely on distant supervision through literal matches. 6 authors · Jul 20, 2023
- LLM-as-a-Coauthor: Can Mixed Human-Written and Machine-Generated Text Be Detected? With the rapid development and widespread application of Large Language Models (LLMs), the use of Machine-Generated Text (MGT) has become increasingly common, bringing with it potential risks, especially in terms of quality and integrity in fields like news, education, and science. Current research mainly focuses on purely MGT detection without adequately addressing mixed scenarios, including AI-revised Human-Written Text (HWT) or human-revised MGT. To tackle this challenge, we define mixtext, a form of mixed text involving both AI and human-generated content. Then, we introduce MixSet, the first dataset dedicated to studying these mixtext scenarios. Leveraging MixSet, we executed comprehensive experiments to assess the efficacy of prevalent MGT detectors in handling mixtext situations, evaluating their performance in terms of effectiveness, robustness, and generalization. Our findings reveal that existing detectors struggle to identify mixtext, particularly in dealing with subtle modifications and style adaptability. This research underscores the urgent need for more fine-grain detectors tailored for mixtext, offering valuable insights for future research. Code and Models are available at https://github.com/Dongping-Chen/MixSet. 11 authors · Jan 11, 2024
- How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image This study investigates how fake news uses a thumbnail for a news article with a focus on whether a news article's thumbnail represents the news content correctly. A news article shared with an irrelevant thumbnail can mislead readers into having a wrong impression of the issue, especially in social media environments where users are less likely to click the link and consume the entire content. We propose to capture the degree of semantic incongruity in the multimodal relation by using the pretrained CLIP representation. From a source-level analysis, we found that fake news employs a more incongruous image to the main content than general news. Going further, we attempted to detect news articles with image-text incongruity. Evaluation experiments suggest that CLIP-based methods can successfully detect news articles in which the thumbnail is semantically irrelevant to news text. This study contributes to the research by providing a novel view on tackling online fake news and misinformation. Code and datasets are available at https://github.com/ssu-humane/fake-news-thumbnail. 4 authors · Apr 12, 2022
- EDGAR-CORPUS: Billions of Tokens Make The World Go Round We release EDGAR-CORPUS, a novel corpus comprising annual reports from all the publicly traded companies in the US spanning a period of more than 25 years. To the best of our knowledge, EDGAR-CORPUS is the largest financial NLP corpus available to date. All the reports are downloaded, split into their corresponding items (sections), and provided in a clean, easy-to-use JSON format. We use EDGAR-CORPUS to train and release EDGAR-W2V, which are WORD2VEC embeddings for the financial domain. We employ these embeddings in a battery of financial NLP tasks and showcase their superiority over generic GloVe embeddings and other existing financial word embeddings. We also open-source EDGAR-CRAWLER, a toolkit that facilitates downloading and extracting future annual reports. 4 authors · Sep 29, 2021
- SEFD: Semantic-Enhanced Framework for Detecting LLM-Generated Text The widespread adoption of large language models (LLMs) has created an urgent need for robust tools to detect LLM-generated text, especially in light of paraphrasing techniques that often evade existing detection methods. To address this challenge, we present a novel semantic-enhanced framework for detecting LLM-generated text (SEFD) that leverages a retrieval-based mechanism to fully utilize text semantics. Our framework improves upon existing detection methods by systematically integrating retrieval-based techniques with traditional detectors, employing a carefully curated retrieval mechanism that strikes a balance between comprehensive coverage and computational efficiency. We showcase the effectiveness of our approach in sequential text scenarios common in real-world applications, such as online forums and Q\&A platforms. Through comprehensive experiments across various LLM-generated texts and detection methods, we demonstrate that our framework substantially enhances detection accuracy in paraphrasing scenarios while maintaining robustness for standard LLM-generated content. 6 authors · Nov 17, 2024
- Generating clickbait spoilers with an ensemble of large language models Clickbait posts are a widespread problem in the webspace. The generation of spoilers, i.e. short texts that neutralize clickbait by providing information that satisfies the curiosity induced by it, is one of the proposed solutions to the problem. Current state-of-the-art methods are based on passage retrieval or question answering approaches and are limited to generating spoilers only in the form of a phrase or a passage. In this work, we propose an ensemble of fine-tuned large language models for clickbait spoiler generation. Our approach is not limited to phrase or passage spoilers, but is also able to generate multipart spoilers that refer to several non-consecutive parts of text. Experimental evaluation demonstrates that the proposed ensemble model outperforms the baselines in terms of BLEU, METEOR and BERTScore metrics. 2 authors · May 25, 2024
- Standardize: Aligning Language Models with Expert-Defined Standards for Content Generation Domain experts across engineering, healthcare, and education follow strict standards for producing quality content such as technical manuals, medication instructions, and children's reading materials. However, current works in controllable text generation have yet to explore using these standards as references for control. Towards this end, we introduce Standardize, a retrieval-style in-context learning-based framework to guide large language models to align with expert-defined standards. Focusing on English language standards in the education domain as a use case, we consider the Common European Framework of Reference for Languages (CEFR) and Common Core Standards (CCS) for the task of open-ended content generation. Our findings show that models can gain 40% to 100% increase in precise accuracy for Llama2 and GPT-4, respectively, demonstrating that the use of knowledge artifacts extracted from standards and integrating them in the generation process can effectively guide models to produce better standard-aligned content. 3 authors · Feb 19, 2024
- Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions. 4 authors · Feb 13, 2024
- Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying In today's digital world, cyberbullying is a serious problem that can harm the mental and physical health of people who use social media. This paper explains just how serious cyberbullying is and how it really affects indi-viduals exposed to it. It also stresses how important it is to find better ways to detect cyberbullying so that online spaces can be safer. Plus, it talks about how making more accurate tools to spot cyberbullying will be really helpful in the future. Our paper introduces a deep learning-based ap-proach, primarily employing BERT and BiLSTM architectures, to effective-ly address cyberbullying. This approach is designed to analyse large vol-umes of posts and predict potential instances of cyberbullying in online spaces. Our results demonstrate the superiority of the hateBERT model, an extension of BERT focused on hate speech detection, among the five mod-els, achieving an accuracy rate of 89.16%. This research is a significant con-tribution to "Computational Intelligence for Social Transformation," prom-ising a safer and more inclusive digital landscape. 4 authors · Apr 1, 2024
1 AnyText: Multilingual Visual Text Generation And Editing Diffusion model based Text-to-Image has achieved impressive achievements recently. Although current technology for synthesizing images is highly advanced and capable of generating images with high fidelity, it is still possible to give the show away when focusing on the text area in the generated image. To address this issue, we introduce AnyText, a diffusion-based multilingual visual text generation and editing model, that focuses on rendering accurate and coherent text in the image. AnyText comprises a diffusion pipeline with two primary elements: an auxiliary latent module and a text embedding module. The former uses inputs like text glyph, position, and masked image to generate latent features for text generation or editing. The latter employs an OCR model for encoding stroke data as embeddings, which blend with image caption embeddings from the tokenizer to generate texts that seamlessly integrate with the background. We employed text-control diffusion loss and text perceptual loss for training to further enhance writing accuracy. AnyText can write characters in multiple languages, to the best of our knowledge, this is the first work to address multilingual visual text generation. It is worth mentioning that AnyText can be plugged into existing diffusion models from the community for rendering or editing text accurately. After conducting extensive evaluation experiments, our method has outperformed all other approaches by a significant margin. Additionally, we contribute the first large-scale multilingual text images dataset, AnyWord-3M, containing 3 million image-text pairs with OCR annotations in multiple languages. Based on AnyWord-3M dataset, we propose AnyText-benchmark for the evaluation of visual text generation accuracy and quality. Our project will be open-sourced on https://github.com/tyxsspa/AnyText to improve and promote the development of text generation technology. 5 authors · Nov 6, 2023
- Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems. 8 authors · Jun 24, 2024
4 Detection Avoidance Techniques for Large Language Models The increasing popularity of large language models has not only led to widespread use but has also brought various risks, including the potential for systematically spreading fake news. Consequently, the development of classification systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated in an experimental series: Systematic changes of the generative models' temperature proofed shallow learning-detectors to be the least reliable. Fine-tuning the generative model via reinforcement learning circumvented BERT-based-detectors. Finally, rephrasing led to a >90\% evasion of zero-shot-detectors like DetectGPT, although texts stayed highly similar to the original. A comparison with existing work highlights the better performance of the presented methods. Possible implications for society and further research are discussed. 4 authors · Mar 10 1
1 Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers. 1 authors · Feb 18
1 Multiresolution Textual Inversion We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion 2 authors · Nov 30, 2022
- What's in the Box? A Preliminary Analysis of Undesirable Content in the Common Crawl Corpus Whereas much of the success of the current generation of neural language models has been driven by increasingly large training corpora, relatively little research has been dedicated to analyzing these massive sources of textual data. In this exploratory analysis, we delve deeper into the Common Crawl, a colossal web corpus that is extensively used for training language models. We find that it contains a significant amount of undesirable content, including hate speech and sexually explicit content, even after filtering procedures. We discuss the potential impacts of this content on language models and conclude with future research directions and a more mindful approach to corpus collection and analysis. 2 authors · May 6, 2021
2 LongEmbed: Extending Embedding Models for Long Context Retrieval Embedding models play a pivot role in modern NLP applications such as IR and RAG. While the context limit of LLMs has been pushed beyond 1 million tokens, embedding models are still confined to a narrow context window not exceeding 8k tokens, refrained from application scenarios requiring long inputs such as legal contracts. This paper explores context window extension of existing embedding models, pushing the limit to 32k without requiring additional training. First, we examine the performance of current embedding models for long context retrieval on our newly constructed LongEmbed benchmark. LongEmbed comprises two synthetic tasks and four carefully chosen real-world tasks, featuring documents of varying length and dispersed target information. Benchmarking results underscore huge room for improvement in these models. Based on this, comprehensive experiments show that training-free context window extension strategies like position interpolation can effectively extend the context window of existing embedding models by several folds, regardless of their original context being 512 or beyond 4k. Furthermore, for models employing absolute position encoding (APE), we show the possibility of further fine-tuning to harvest notable performance gains while strictly preserving original behavior for short inputs. For models using rotary position embedding (RoPE), significant enhancements are observed when employing RoPE-specific methods, such as NTK and SelfExtend, indicating RoPE's superiority over APE for context window extension. To facilitate future research, we release E5-Base-4k and E5-RoPE-Base, along with the LongEmbed benchmark. 7 authors · Apr 18, 2024 2
- SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization In this paper, we present a conceptually simple while empirically powerful framework for abstractive summarization, SimCLS, which can bridge the gap between the learning objective and evaluation metrics resulting from the currently dominated sequence-to-sequence learning framework by formulating text generation as a reference-free evaluation problem (i.e., quality estimation) assisted by contrastive learning. Experimental results show that, with minor modification over existing top-scoring systems, SimCLS can improve the performance of existing top-performing models by a large margin. Particularly, 2.51 absolute improvement against BART and 2.50 over PEGASUS w.r.t ROUGE-1 on the CNN/DailyMail dataset, driving the state-of-the-art performance to a new level. We have open-sourced our codes and results: https://github.com/yixinL7/SimCLS. Results of our proposed models have been deployed into ExplainaBoard platform, which allows researchers to understand our systems in a more fine-grained way. 2 authors · Jun 3, 2021
4 MiRAGeNews: Multimodal Realistic AI-Generated News Detection The proliferation of inflammatory or misleading "fake" news content has become increasingly common in recent years. Simultaneously, it has become easier than ever to use AI tools to generate photorealistic images depicting any scene imaginable. Combining these two -- AI-generated fake news content -- is particularly potent and dangerous. To combat the spread of AI-generated fake news, we propose the MiRAGeNews Dataset, a dataset of 12,500 high-quality real and AI-generated image-caption pairs from state-of-the-art generators. We find that our dataset poses a significant challenge to humans (60% F-1) and state-of-the-art multi-modal LLMs (< 24% F-1). Using our dataset we train a multi-modal detector (MiRAGe) that improves by +5.1% F-1 over state-of-the-art baselines on image-caption pairs from out-of-domain image generators and news publishers. We release our code and data to aid future work on detecting AI-generated content. 4 authors · Oct 11, 2024 2
- Applying Transformer-based Text Summarization for Keyphrase Generation Keyphrases are crucial for searching and systematizing scholarly documents. Most current methods for keyphrase extraction are aimed at the extraction of the most significant words in the text. But in practice, the list of keyphrases often includes words that do not appear in the text explicitly. In this case, the list of keyphrases represents an abstractive summary of the source text. In this paper, we experiment with popular transformer-based models for abstractive text summarization using four benchmark datasets for keyphrase extraction. We compare the results obtained with the results of common unsupervised and supervised methods for keyphrase extraction. Our evaluation shows that summarization models are quite effective in generating keyphrases in the terms of the full-match F1-score and BERTScore. However, they produce a lot of words that are absent in the author's list of keyphrases, which makes summarization models ineffective in terms of ROUGE-1. We also investigate several ordering strategies to concatenate target keyphrases. The results showed that the choice of strategy affects the performance of keyphrase generation. 2 authors · Sep 8, 2022
- Arbitrary Shape Text Detection using Transformers Recent text detection frameworks require several handcrafted components such as anchor generation, non-maximum suppression (NMS), or multiple processing stages (e.g. label generation) to detect arbitrarily shaped text images. In contrast, we propose an end-to-end trainable architecture based on Detection using Transformers (DETR), that outperforms previous state-of-the-art methods in arbitrary-shaped text detection. At its core, our proposed method leverages a bounding box loss function that accurately measures the arbitrary detected text regions' changes in scale and aspect ratio. This is possible due to a hybrid shape representation made from Bezier curves, that are further split into piece-wise polygons. The proposed loss function is then a combination of a generalized-split-intersection-over-union loss defined over the piece-wise polygons and regularized by a Smooth-ln regression over the Bezier curve's control points. We evaluate our proposed model using Total-Text and CTW-1500 datasets for curved text, and MSRA-TD500 and ICDAR15 datasets for multi-oriented text, and show that the proposed method outperforms the previous state-of-the-art methods in arbitrary-shape text detection tasks. 3 authors · Feb 22, 2022
18 Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering Visual text rendering poses a fundamental challenge for contemporary text-to-image generation models, with the core problem lying in text encoder deficiencies. To achieve accurate text rendering, we identify two crucial requirements for text encoders: character awareness and alignment with glyphs. Our solution involves crafting a series of customized text encoder, Glyph-ByT5, by fine-tuning the character-aware ByT5 encoder using a meticulously curated paired glyph-text dataset. We present an effective method for integrating Glyph-ByT5 with SDXL, resulting in the creation of the Glyph-SDXL model for design image generation. This significantly enhances text rendering accuracy, improving it from less than 20% to nearly 90% on our design image benchmark. Noteworthy is Glyph-SDXL's newfound ability for text paragraph rendering, achieving high spelling accuracy for tens to hundreds of characters with automated multi-line layouts. Finally, through fine-tuning Glyph-SDXL with a small set of high-quality, photorealistic images featuring visual text, we showcase a substantial improvement in scene text rendering capabilities in open-domain real images. These compelling outcomes aim to encourage further exploration in designing customized text encoders for diverse and challenging tasks. 7 authors · Mar 14, 2024 1
- GTA: Gated Toxicity Avoidance for LM Performance Preservation Caution: This paper includes offensive words that could potentially cause unpleasantness. The fast-paced evolution of generative language models such as GPT-4 has demonstrated outstanding results in various NLP generation tasks. However, due to the potential generation of offensive words related to race or gender, various Controllable Text Generation (CTG) methods have been proposed to mitigate the occurrence of harmful words. However, existing CTG methods not only reduce toxicity but also negatively impact several aspects of the language model's generation performance, including topic consistency, grammar, and perplexity. This paper explores the limitations of previous methods and introduces a novel solution in the form of a simple Gated Toxicity Avoidance (GTA) that can be applied to any CTG method. We also evaluate the effectiveness of the proposed GTA by comparing it with state-of-the-art CTG methods across various datasets. Our findings reveal that gated toxicity avoidance efficiently achieves comparable levels of toxicity reduction to the original CTG methods while preserving the generation performance of the language model. 2 authors · Dec 11, 2023
- NoticIA: A Clickbait Article Summarization Dataset in Spanish We present NoticIA, a dataset consisting of 850 Spanish news articles featuring prominent clickbait headlines, each paired with high-quality, single-sentence generative summarizations written by humans. This task demands advanced text understanding and summarization abilities, challenging the models' capacity to infer and connect diverse pieces of information to meet the user's informational needs generated by the clickbait headline. We evaluate the Spanish text comprehension capabilities of a wide range of state-of-the-art large language models. Additionally, we use the dataset to train ClickbaitFighter, a task-specific model that achieves near-human performance in this task. 2 authors · Apr 11, 2024
- Semantically Enriched Cross-Lingual Sentence Embeddings for Crisis-related Social Media Texts Tasks such as semantic search and clustering on crisis-related social media texts enhance our comprehension of crisis discourse, aiding decision-making and targeted interventions. Pre-trained language models have advanced performance in crisis informatics, but their contextual embeddings lack semantic meaningfulness. Although the CrisisTransformers family includes a sentence encoder to address the semanticity issue, it remains monolingual, processing only English texts. Furthermore, employing separate models for different languages leads to embeddings in distinct vector spaces, introducing challenges when comparing semantic similarities between multi-lingual texts. Therefore, we propose multi-lingual sentence encoders (CT-XLMR-SE and CT-mBERT-SE) that embed crisis-related social media texts for over 50 languages, such that texts with similar meanings are in close proximity within the same vector space, irrespective of language diversity. Results in sentence encoding and sentence matching tasks are promising, suggesting these models could serve as robust baselines when embedding multi-lingual crisis-related social media texts. The models are publicly available at: https://huggingface.co/crisistransformers. 3 authors · Mar 25, 2024
3 Unstructured Evidence Attribution for Long Context Query Focused Summarization Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query. Extracting and properly citing evidence spans could help improve the transparency and reliability of these summaries. At the same time, LLMs suffer from positional biases in terms of which information they understand and attend to, which could affect evidence citation. Whereas previous work has focused on evidence citation with predefined levels of granularity (e.g. sentence, paragraph, document, etc.), we propose the task of long-context query focused summarization with unstructured evidence citation. We show how existing systems struggle to generate and properly cite unstructured evidence from their context, and that evidence tends to be "lost-in-the-middle". To help mitigate this, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel domain-agnostic pipeline which can be used as supervision to adapt LLMs to this task. We demonstrate across 5 LLMs of different sizes and 4 datasets with varying document types and lengths that LLMs adapted with SUnsET data generate more relevant and factually consistent evidence than their base models, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries. 5 authors · Feb 20 2
1 A Survey of Knowledge-Enhanced Text Generation The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry. 7 authors · Oct 9, 2020
- Self-Attentive Model for Headline Generation Headline generation is a special type of text summarization task. While the amount of available training data for this task is almost unlimited, it still remains challenging, as learning to generate headlines for news articles implies that the model has strong reasoning about natural language. To overcome this issue, we applied recent Universal Transformer architecture paired with byte-pair encoding technique and achieved new state-of-the-art results on the New York Times Annotated corpus with ROUGE-L F1-score 24.84 and ROUGE-2 F1-score 13.48. We also present the new RIA corpus and reach ROUGE-L F1-score 36.81 and ROUGE-2 F1-score 22.15 on it. 3 authors · Jan 23, 2019
- Recovering document annotations for sentence-level bitext Data availability limits the scope of any given task. In machine translation, historical models were incapable of handling longer contexts, so the lack of document-level datasets was less noticeable. Now, despite the emergence of long-sequence methods, we remain within a sentence-level paradigm and without data to adequately approach context-aware machine translation. Most large-scale datasets have been processed through a pipeline that discards document-level metadata. In this work, we reconstruct document-level information for three (ParaCrawl, News Commentary, and Europarl) large datasets in German, French, Spanish, Italian, Polish, and Portuguese (paired with English). We then introduce a document-level filtering technique as an alternative to traditional bitext filtering. We present this filtering with analysis to show that this method prefers context-consistent translations rather than those that may have been sentence-level machine translated. Last we train models on these longer contexts and demonstrate improvement in document-level translation without degradation of sentence-level translation. We release our dataset, ParaDocs, and resulting models as a resource to the community. 3 authors · Jun 6, 2024
- CrisisMMD: Multimodal Twitter Datasets from Natural Disasters During natural and man-made disasters, people use social media platforms such as Twitter to post textual and multime- dia content to report updates about injured or dead people, infrastructure damage, and missing or found people among other information types. Studies have revealed that this on- line information, if processed timely and effectively, is ex- tremely useful for humanitarian organizations to gain situational awareness and plan relief operations. In addition to the analysis of textual content, recent studies have shown that imagery content on social media can boost disaster response significantly. Despite extensive research that mainly focuses on textual content to extract useful information, limited work has focused on the use of imagery content or the combination of both content types. One of the reasons is the lack of labeled imagery data in this domain. Therefore, in this paper, we aim to tackle this limitation by releasing a large multi-modal dataset collected from Twitter during different natural disasters. We provide three types of annotations, which are useful to address a number of crisis response and management tasks for different humanitarian organizations. 3 authors · May 2, 2018
1 SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website. 6 authors · Aug 7, 2020
- Low Resource Summarization using Pre-trained Language Models With the advent of Deep Learning based Artificial Neural Networks models, Natural Language Processing (NLP) has witnessed significant improvements in textual data processing in terms of its efficiency and accuracy. However, the research is mostly restricted to high-resource languages such as English and low-resource languages still suffer from a lack of available resources in terms of training datasets as well as models with even baseline evaluation results. Considering the limited availability of resources for low-resource languages, we propose a methodology for adapting self-attentive transformer-based architecture models (mBERT, mT5) for low-resource summarization, supplemented by the construction of a new baseline dataset (76.5k article, summary pairs) in a low-resource language Urdu. Choosing news (a publicly available source) as the application domain has the potential to make the proposed methodology useful for reproducing in other languages with limited resources. Our adapted summarization model urT5 with up to 44.78\% reduction in size as compared to mT5 can capture contextual information of low resource language effectively with evaluation score (up to 46.35 ROUGE-1, 77 BERTScore) at par with state-of-the-art models in high resource language English (PEGASUS: 47.21, BART: 45.14 on XSUM Dataset). The proposed method provided a baseline approach towards extractive as well as abstractive summarization with competitive evaluation results in a limited resource setup. 4 authors · Oct 4, 2023
- RKadiyala at SemEval-2024 Task 8: Black-Box Word-Level Text Boundary Detection in Partially Machine Generated Texts With increasing usage of generative models for text generation and widespread use of machine generated texts in various domains, being able to distinguish between human written and machine generated texts is a significant challenge. While existing models and proprietary systems focus on identifying whether given text is entirely human written or entirely machine generated, only a few systems provide insights at sentence or paragraph level at likelihood of being machine generated at a non reliable accuracy level, working well only for a set of domains and generators. This paper introduces few reliable approaches for the novel task of identifying which part of a given text is machine generated at a word level while comparing results from different approaches and methods. We present a comparison with proprietary systems , performance of our model on unseen domains' and generators' texts. The findings reveal significant improvements in detection accuracy along with comparison on other aspects of detection capabilities. Finally we discuss potential avenues for improvement and implications of our work. The proposed model is also well suited for detecting which parts of a text are machine generated in outputs of Instruct variants of many LLMs. 1 authors · Oct 21, 2024
2 The What, Why, and How of Context Length Extension Techniques in Large Language Models -- A Detailed Survey The advent of Large Language Models (LLMs) represents a notable breakthrough in Natural Language Processing (NLP), contributing to substantial progress in both text comprehension and generation. However, amidst these advancements, it is noteworthy that LLMs often face a limitation in terms of context length extrapolation. Understanding and extending the context length for LLMs is crucial in enhancing their performance across various NLP applications. In this survey paper, we delve into the multifaceted aspects of exploring why it is essential, and the potential transformations that superior techniques could bring to NLP applications. We study the inherent challenges associated with extending context length and present an organized overview of the existing strategies employed by researchers. Additionally, we discuss the intricacies of evaluating context extension techniques and highlight the open challenges that researchers face in this domain. Furthermore, we explore whether there is a consensus within the research community regarding evaluation standards and identify areas where further agreement is needed. This comprehensive survey aims to serve as a valuable resource for researchers, guiding them through the nuances of context length extension techniques and fostering discussions on future advancements in this evolving field. 6 authors · Jan 15, 2024
1 Cyberbullying Detection -- Technical Report 2/2018, Department of Computer Science AGH, University of Science and Technology The research described in this paper concerns automatic cyberbullying detection in social media. There are two goals to achieve: building a gold standard cyberbullying detection dataset and measuring the performance of the Samurai cyberbullying detection system. The Formspring dataset provided in a Kaggle competition was re-annotated as a part of the research. The annotation procedure is described in detail and, unlike many other recent data annotation initiatives, does not use Mechanical Turk for finding people willing to perform the annotation. The new annotation compared to the old one seems to be more coherent since all tested cyberbullying detection system performed better on the former. The performance of the Samurai system is compared with 5 commercial systems and one well-known machine learning algorithm, used for classifying textual content, namely Fasttext. It turns out that Samurai scores the best in all measures (accuracy, precision and recall), while Fasttext is the second-best performing algorithm. 4 authors · Aug 2, 2018
8 PhysBERT: A Text Embedding Model for Physics Scientific Literature The specialized language and complex concepts in physics pose significant challenges for information extraction through Natural Language Processing (NLP). Central to effective NLP applications is the text embedding model, which converts text into dense vector representations for efficient information retrieval and semantic analysis. In this work, we introduce PhysBERT, the first physics-specific text embedding model. Pre-trained on a curated corpus of 1.2 million arXiv physics papers and fine-tuned with supervised data, PhysBERT outperforms leading general-purpose models on physics-specific tasks including the effectiveness in fine-tuning for specific physics subdomains. 3 authors · Aug 18, 2024 1
- Embracing data abundance: BookTest Dataset for Reading Comprehension There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement. 3 authors · Oct 4, 2016
1 COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors. 7 authors · Jun 2, 2023
1 E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning In the realm of Large Language Models (LLMs), the ability to process long contexts is increasingly crucial for tasks such as multi-round dialogues, code generation, and document summarization. This paper addresses the challenges of enhancing the long-context performance, reducing computational complexity, and leveraging pretrained models collectively termed the "impossible triangle." We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. The method involves splitting long contexts into chunks, compressing each into embedding vectors via a pretrained text encoder, and utilizing an adapter to align these representations with a decoder-only LLM. Two training objectives, focusing on reconstruction of the encoder output and long-context instruction fine-tuning, are employed to facilitate the understanding of soft prompts by the LLM. Experimental results demonstrate that E2LLM achieves superior performance in long-context scenarios while balancing efficiency, performance, and compatibility with pretrained models. Our framework thus represents a significant advancement in the field, contributing to effective long-text modeling. 7 authors · Sep 10, 2024 2
- Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests. 4 authors · Apr 11, 2020
1 BERT-VBD: Vietnamese Multi-Document Summarization Framework In tackling the challenge of Multi-Document Summarization (MDS), numerous methods have been proposed, spanning both extractive and abstractive summarization techniques. However, each approach has its own limitations, making it less effective to rely solely on either one. An emerging and promising strategy involves a synergistic fusion of extractive and abstractive summarization methods. Despite the plethora of studies in this domain, research on the combined methodology remains scarce, particularly in the context of Vietnamese language processing. This paper presents a novel Vietnamese MDS framework leveraging a two-component pipeline architecture that integrates extractive and abstractive techniques. The first component employs an extractive approach to identify key sentences within each document. This is achieved by a modification of the pre-trained BERT network, which derives semantically meaningful phrase embeddings using siamese and triplet network structures. The second component utilizes the VBD-LLaMA2-7B-50b model for abstractive summarization, ultimately generating the final summary document. Our proposed framework demonstrates a positive performance, attaining ROUGE-2 scores of 39.6% on the VN-MDS dataset and outperforming the state-of-the-art baselines. 3 authors · Sep 18, 2024 2
2 Towards General Text Embeddings with Multi-stage Contrastive Learning We present GTE, a general-purpose text embedding model trained with multi-stage contrastive learning. In line with recent advancements in unifying various NLP tasks into a single format, we train a unified text embedding model by employing contrastive learning over a diverse mixture of datasets from multiple sources. By significantly increasing the number of training data during both unsupervised pre-training and supervised fine-tuning stages, we achieve substantial performance gains over existing embedding models. Notably, even with a relatively modest parameter count of 110M, GTE_base outperforms the black-box embedding API provided by OpenAI and even surpasses 10x larger text embedding models on the massive text embedding benchmark. Furthermore, without additional fine-tuning on each programming language individually, our model outperforms previous best code retrievers of similar size by treating code as text. In summary, our model achieves impressive results by effectively harnessing multi-stage contrastive learning, offering a powerful and efficient text embedding model with broad applicability across various NLP and code-related tasks. 6 authors · Aug 6, 2023
- Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection and/or recognition processes, resulting in inefficient and inflexible retrieval. Different from them, in this work we propose to explore the intrinsic potential of Contrastive Language-Image Pre-training (CLIP) for OCR-free scene text retrieval. Through empirical analysis, we observe that the main challenges of CLIP as a text retriever are: 1) limited text perceptual scale, and 2) entangled visual-semantic concepts. To this end, a novel model termed FDP (Focus, Distinguish, and Prompt) is developed. FDP first focuses on scene text via shifting the attention to the text area and probing the hidden text knowledge, and then divides the query text into content word and function word for processing, in which a semantic-aware prompting scheme and a distracted queries assistance module are utilized. Extensive experiments show that FDP significantly enhances the inference speed while achieving better or competitive retrieval accuracy compared to existing methods. Notably, on the IIIT-STR benchmark, FDP surpasses the state-of-the-art model by 4.37% with a 4 times faster speed. Furthermore, additional experiments under phrase-level and attribute-aware scene text retrieval settings validate FDP's particular advantages in handling diverse forms of query text. The source code will be publicly available at https://github.com/Gyann-z/FDP. 8 authors · Aug 1, 2024
1 Exploring Transformer Extrapolation Length extrapolation has attracted considerable attention recently since it allows transformers to be tested on longer sequences than those used in training. Previous research has shown that this property can be attained by using carefully designed Relative Positional Encodings (RPEs). While these methods perform well on a variety of corpora, the conditions for length extrapolation have yet to be investigated. This paper attempts to determine what types of RPEs allow for length extrapolation through a thorough mathematical and empirical analysis. We discover that a transformer is certain to possess this property as long as the series that corresponds to the RPE's exponential converges. Two practices are derived from the conditions and examined in language modeling tasks on a variety of corpora. As a bonus from the conditions, we derive a new Theoretical Receptive Field (TRF) to measure the receptive field of RPEs without taking any training steps. Extensive experiments are conducted on the Wikitext-103, Books, Github, and WikiBook datasets to demonstrate the viability of our discovered conditions. We also compare TRF to Empirical Receptive Field (ERF) across different models, showing consistently matched trends on the aforementioned datasets. The code is available at https://github.com/OpenNLPLab/Rpe. 3 authors · Jul 19, 2023
- Total-Text: A Comprehensive Dataset for Scene Text Detection and Recognition Text in curve orientation, despite being one of the common text orientations in real world environment, has close to zero existence in well received scene text datasets such as ICDAR2013 and MSRA-TD500. The main motivation of Total-Text is to fill this gap and facilitate a new research direction for the scene text community. On top of the conventional horizontal and multi-oriented texts, it features curved-oriented text. Total-Text is highly diversified in orientations, more than half of its images have a combination of more than two orientations. Recently, a new breed of solutions that casted text detection as a segmentation problem has demonstrated their effectiveness against multi-oriented text. In order to evaluate its robustness against curved text, we fine-tuned DeconvNet and benchmark it on Total-Text. Total-Text with its annotation is available at https://github.com/cs-chan/Total-Text-Dataset 2 authors · Oct 28, 2017
14 Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents Text embedding models have emerged as powerful tools for transforming sentences into fixed-sized feature vectors that encapsulate semantic information. While these models are essential for tasks like information retrieval, semantic clustering, and text re-ranking, most existing open-source models, especially those built on architectures like BERT, struggle to represent lengthy documents and often resort to truncation. One common approach to mitigate this challenge involves splitting documents into smaller paragraphs for embedding. However, this strategy results in a much larger set of vectors, consequently leading to increased memory consumption and computationally intensive vector searches with elevated latency. To address these challenges, we introduce Jina Embeddings 2, an open-source text embedding model capable of accommodating up to 8192 tokens. This model is designed to transcend the conventional 512-token limit and adeptly process long documents. Jina Embeddings 2 not only achieves state-of-the-art performance on a range of embedding-related tasks in the MTEB benchmark but also matches the performance of OpenAI's proprietary ada-002 model. Additionally, our experiments indicate that an extended context can enhance performance in tasks such as NarrativeQA. 13 authors · Oct 30, 2023
- A Holistic Approach to Undesired Content Detection in the Real World We present a holistic approach to building a robust and useful natural language classification system for real-world content moderation. The success of such a system relies on a chain of carefully designed and executed steps, including the design of content taxonomies and labeling instructions, data quality control, an active learning pipeline to capture rare events, and a variety of methods to make the model robust and to avoid overfitting. Our moderation system is trained to detect a broad set of categories of undesired content, including sexual content, hateful content, violence, self-harm, and harassment. This approach generalizes to a wide range of different content taxonomies and can be used to create high-quality content classifiers that outperform off-the-shelf models. 8 authors · Aug 5, 2022
- A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods. 7 authors · Jan 4, 2023
- AutoTemplate: A Simple Recipe for Lexically Constrained Text Generation Lexically constrained text generation is one of the constrained text generation tasks, which aims to generate text that covers all the given constraint lexicons. While the existing approaches tackle this problem using a lexically constrained beam search algorithm or dedicated model using non-autoregressive decoding, there is a trade-off between the generated text quality and the hard constraint satisfaction. We introduce AutoTemplate, a simple yet effective lexically constrained text generation framework divided into template generation and lexicalization tasks. The template generation is to generate the text with the placeholders, and lexicalization replaces them into the constraint lexicons to perform lexically constrained text generation. We conducted the experiments on two tasks: keywords-to-sentence generations and entity-guided summarization. Experimental results show that the AutoTemplate outperforms the competitive baselines on both tasks while satisfying the hard lexical constraints. 1 authors · Nov 15, 2022
1 CX DB8: A queryable extractive summarizer and semantic search engine Competitive Debate's increasingly technical nature has left competitors looking for tools to accelerate evidence production. We find that the unique type of extractive summarization performed by competitive debaters - summarization with a bias towards a particular target meaning - can be performed using the latest innovations in unsupervised pre-trained text vectorization models. We introduce CX_DB8, a queryable word-level extractive summarizer and evidence creation framework, which allows for rapid, biasable summarization of arbitarily sized texts. CX_DB8s usage of the embedding framework Flair means that as the underlying models improve, CX_DB8 will also improve. We observe that CX_DB8 also functions as a semantic search engine, and has application as a supplement to traditional "find" functionality in programs and webpages. CX_DB8 is currently used by competitive debaters and is made available to the public at https://github.com/Hellisotherpeople/CX_DB8 1 authors · Dec 7, 2020
2 ZeroBERTo: Leveraging Zero-Shot Text Classification by Topic Modeling Traditional text classification approaches often require a good amount of labeled data, which is difficult to obtain, especially in restricted domains or less widespread languages. This lack of labeled data has led to the rise of low-resource methods, that assume low data availability in natural language processing. Among them, zero-shot learning stands out, which consists of learning a classifier without any previously labeled data. The best results reported with this approach use language models such as Transformers, but fall into two problems: high execution time and inability to handle long texts as input. This paper proposes a new model, ZeroBERTo, which leverages an unsupervised clustering step to obtain a compressed data representation before the classification task. We show that ZeroBERTo has better performance for long inputs and shorter execution time, outperforming XLM-R by about 12% in the F1 score in the FolhaUOL dataset. Keywords: Low-Resource NLP, Unlabeled data, Zero-Shot Learning, Topic Modeling, Transformers. 8 authors · Jan 4, 2022
- Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning Training models with longer in-context lengths is a significant challenge for multimodal model due to substantial GPU memory and computational costs. This exploratory study does not present state-of-the-art models; rather, it introduces an innovative method designed to increase in-context text length in multi-modality large language models (MLLMs) efficiently. We present Visualized In-Context Text Processing (VisInContext), which processes long in-context text using visual tokens. This technique significantly reduces GPU memory usage and floating point operations (FLOPs) for both training and inferenceing stage. For instance, our method expands the pre-training in-context text length from 256 to 2048 tokens with nearly same FLOPs for a 56 billion parameter MOE model. Experimental results demonstrate that model trained with VisInContext delivers superior performance on common downstream benchmarks for in-context few-shot evaluation. Additionally, VisInContext is complementary to existing methods for increasing in-context text length and enhances document understanding capabilities, showing great potential in document QA tasks and sequential document retrieval. 6 authors · Jun 4, 2024
- MemeGuard: An LLM and VLM-based Framework for Advancing Content Moderation via Meme Intervention In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content like memes. Addressing this gap, we present MemeGuard, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention. MemeGuard harnesses a specially fine-tuned VLM, VLMeme, for meme interpretation, and a multimodal knowledge selection and ranking mechanism (MKS) for distilling relevant knowledge. This knowledge is then employed by a general-purpose LLM to generate contextually appropriate interventions. Another key contribution of this work is the \textbf{Intervening} \textbf{Cyberbullying in Multimodal Memes (ICMM)} dataset, a high-quality, labeled dataset featuring toxic memes and their corresponding human-annotated interventions. We leverage ICMM to test MemeGuard, demonstrating its proficiency in generating relevant and effective responses to toxic memes. 6 authors · Jun 8, 2024
- Bag of Tricks for Efficient Text Classification This paper explores a simple and efficient baseline for text classification. Our experiments show that our fast text classifier fastText is often on par with deep learning classifiers in terms of accuracy, and many orders of magnitude faster for training and evaluation. We can train fastText on more than one billion words in less than ten minutes using a standard multicore~CPU, and classify half a million sentences among~312K classes in less than a minute. 4 authors · Jul 6, 2016
1 Automatic News Summerization Natural Language Processing is booming with its applications in the real world, one of which is Text Summarization for large texts including news articles. This research paper provides an extensive comparative evaluation of extractive and abstractive approaches for news text summarization, with an emphasis on the ROUGE score analysis. The study employs the CNN-Daily Mail dataset, which consists of news articles and human-generated reference summaries. The evaluation employs ROUGE scores to assess the efficacy and quality of generated summaries. After Evaluation, we integrate the best-performing models on a web application to assess their real-world capabilities and user experience. 2 authors · Oct 17, 2023
- Handling and Presenting Harmful Text in NLP Research Text data can pose a risk of harm. However, the risks are not fully understood, and how to handle, present, and discuss harmful text in a safe way remains an unresolved issue in the NLP community. We provide an analytical framework categorising harms on three axes: (1) the harm type (e.g., misinformation, hate speech or racial stereotypes); (2) whether a harm is sought as a feature of the research design if explicitly studying harmful content (e.g., training a hate speech classifier), versus unsought if harmful content is encountered when working on unrelated problems (e.g., language generation or part-of-speech tagging); and (3) who it affects, from people (mis)represented in the data to those handling the data and those publishing on the data. We provide advice for practitioners, with concrete steps for mitigating harm in research and in publication. To assist implementation we introduce HarmCheck -- a documentation standard for handling and presenting harmful text in research. 4 authors · Apr 29, 2022
- Text and Code Embeddings by Contrastive Pre-Training Text embeddings are useful features in many applications such as semantic search and computing text similarity. Previous work typically trains models customized for different use cases, varying in dataset choice, training objective and model architecture. In this work, we show that contrastive pre-training on unsupervised data at scale leads to high quality vector representations of text and code. The same unsupervised text embeddings that achieve new state-of-the-art results in linear-probe classification also display impressive semantic search capabilities and sometimes even perform competitively with fine-tuned models. On linear-probe classification accuracy averaging over 7 tasks, our best unsupervised model achieves a relative improvement of 4% and 1.8% over previous best unsupervised and supervised text embedding models respectively. The same text embeddings when evaluated on large-scale semantic search attains a relative improvement of 23.4%, 14.7%, and 10.6% over previous best unsupervised methods on MSMARCO, Natural Questions and TriviaQA benchmarks, respectively. Similarly to text embeddings, we train code embedding models on (text, code) pairs, obtaining a 20.8% relative improvement over prior best work on code search. 25 authors · Jan 24, 2022
- The Code2Text Challenge: Text Generation in Source Code Libraries We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets. 3 authors · Jul 31, 2017
- Author's Sentiment Prediction We introduce PerSenT, a dataset of crowd-sourced annotations of the sentiment expressed by the authors towards the main entities in news articles. The dataset also includes paragraph-level sentiment annotations to provide more fine-grained supervision for the task. Our benchmarks of multiple strong baselines show that this is a difficult classification task. The results also suggest that simply fine-tuning document-level representations from BERT isn't adequate for this task. Making paragraph-level decisions and aggregating them over the entire document is also ineffective. We present empirical and qualitative analyses that illustrate the specific challenges posed by this dataset. We release this dataset with 5.3k documents and 38k paragraphs covering 3.2k unique entities as a challenge in entity sentiment analysis. 5 authors · Nov 11, 2020
9 SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating text-rich visual comprehension of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench. 6 authors · Apr 25, 2024 1
- Base of RoPE Bounds Context Length Position embedding is a core component of current Large Language Models (LLMs). Rotary position embedding (RoPE), a technique that encodes the position information with a rotation matrix, has been the de facto choice for position embedding in many LLMs, such as the Llama series. RoPE has been further utilized to extend long context capability, which is roughly based on adjusting the base parameter of RoPE to mitigate out-of-distribution (OOD) problems in position embedding. However, in this paper, we find that LLMs may obtain a superficial long-context ability based on the OOD theory. We revisit the role of RoPE in LLMs and propose a novel property of long-term decay, we derive that the base of RoPE bounds context length: there is an absolute lower bound for the base value to obtain certain context length capability. Our work reveals the relationship between context length and RoPE base both theoretically and empirically, which may shed light on future long context training. 7 authors · May 23, 2024
- ZeroSCROLLS: A Zero-Shot Benchmark for Long Text Understanding We introduce ZeroSCROLLS, a zero-shot benchmark for natural language understanding over long texts, which contains only test sets, without training or development data. We adapt six tasks from the SCROLLS benchmark, and add four new datasets, including two novel information fusing tasks, such as aggregating the percentage of positive reviews. Using ZeroSCROLLS, we conduct a comprehensive evaluation of both open-source and closed large language models, finding that Claude outperforms ChatGPT, and that GPT-4 achieves the highest average score. However, there is still room for improvement on multiple open challenges in ZeroSCROLLS, such as aggregation tasks, where models struggle to pass the naive baseline. As the state of the art is a moving target, we invite researchers to evaluate their ideas on the live ZeroSCROLLS leaderboard 5 authors · May 23, 2023
- Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies. 4 authors · May 24, 2024
- A Survey of AI-generated Text Forensic Systems: Detection, Attribution, and Characterization We have witnessed lately a rapid proliferation of advanced Large Language Models (LLMs) capable of generating high-quality text. While these LLMs have revolutionized text generation across various domains, they also pose significant risks to the information ecosystem, such as the potential for generating convincing propaganda, misinformation, and disinformation at scale. This paper offers a review of AI-generated text forensic systems, an emerging field addressing the challenges of LLM misuses. We present an overview of the existing efforts in AI-generated text forensics by introducing a detailed taxonomy, focusing on three primary pillars: detection, attribution, and characterization. These pillars enable a practical understanding of AI-generated text, from identifying AI-generated content (detection), determining the specific AI model involved (attribution), and grouping the underlying intents of the text (characterization). Furthermore, we explore available resources for AI-generated text forensics research and discuss the evolving challenges and future directions of forensic systems in an AI era. 7 authors · Mar 2, 2024
- Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly difficult as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by LLM A or B (where B can be a human)? We model LLM-generated text as a sequential stochastic process with complete dependence on history and design zero-shot statistical tests to distinguish between (i) the text generated by two different sets of LLMs A (in-house) and B (non-sanctioned) and also (ii) LLM-generated and human-generated texts. We prove that the type I and type II errors for our tests decrease exponentially in the text length. In designing our tests, we derive concentration inequalities on the difference between log-perplexity and the average entropy of the string under A. Specifically, for a given string, we demonstrate that if the string is generated by A, the log-perplexity of the string under A converges to the average entropy of the string under A, except with an exponentially small probability in string length. We also show that if B generates the text, except with an exponentially small probability in string length, the log-perplexity of the string under A converges to the average cross-entropy of B and A. Lastly, we present preliminary experimental results to support our theoretical results. By enabling guaranteed (with high probability) finding of the origin of harmful LLM-generated text with arbitrary size, we can help combat misinformation. 4 authors · Jan 4
1 Ghostbuster: Detecting Text Ghostwritten by Large Language Models We introduce Ghostbuster, a state-of-the-art system for detecting AI-generated text. Our method works by passing documents through a series of weaker language models, running a structured search over possible combinations of their features, and then training a classifier on the selected features to predict whether documents are AI-generated. Crucially, Ghostbuster does not require access to token probabilities from the target model, making it useful for detecting text generated by black-box models or unknown model versions. In conjunction with our model, we release three new datasets of human- and AI-generated text as detection benchmarks in the domains of student essays, creative writing, and news articles. We compare Ghostbuster to a variety of existing detectors, including DetectGPT and GPTZero, as well as a new RoBERTa baseline. Ghostbuster achieves 99.0 F1 when evaluated across domains, which is 5.9 F1 higher than the best preexisting model. It also outperforms all previous approaches in generalization across writing domains (+7.5 F1), prompting strategies (+2.1 F1), and language models (+4.4 F1). We also analyze the robustness of our system to a variety of perturbations and paraphrasing attacks and evaluate its performance on documents written by non-native English speakers. 4 authors · May 24, 2023 1
- ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations We describe PARANMT-50M, a dataset of more than 50 million English-English sentential paraphrase pairs. We generated the pairs automatically by using neural machine translation to translate the non-English side of a large parallel corpus, following Wieting et al. (2017). Our hope is that ParaNMT-50M can be a valuable resource for paraphrase generation and can provide a rich source of semantic knowledge to improve downstream natural language understanding tasks. To show its utility, we use ParaNMT-50M to train paraphrastic sentence embeddings that outperform all supervised systems on every SemEval semantic textual similarity competition, in addition to showing how it can be used for paraphrase generation. 2 authors · Nov 15, 2017
- Did You Really Just Have a Heart Attack? Towards Robust Detection of Personal Health Mentions in Social Media Millions of users share their experiences on social media sites, such as Twitter, which in turn generate valuable data for public health monitoring, digital epidemiology, and other analyses of population health at global scale. The first, critical, task for these applications is classifying whether a personal health event was mentioned, which we call the (PHM) problem. This task is challenging for many reasons, including typically short length of social media posts, inventive spelling and lexicons, and figurative language, including hyperbole using diseases like "heart attack" or "cancer" for emphasis, and not as a health self-report. This problem is even more challenging for rarely reported, or frequent but ambiguously expressed conditions, such as "stroke". To address this problem, we propose a general, robust method for detecting PHMs in social media, which we call WESPAD, that combines lexical, syntactic, word embedding-based, and context-based features. WESPAD is able to generalize from few examples by automatically distorting the word embedding space to most effectively detect the true health mentions. Unlike previously proposed state-of-the-art supervised and deep-learning techniques, WESPAD requires relatively little training data, which makes it possible to adapt, with minimal effort, to each new disease and condition. We evaluate WESPAD on both an established publicly available Flu detection benchmark, and on a new dataset that we have constructed with mentions of multiple health conditions. Our experiments show that WESPAD outperforms the baselines and state-of-the-art methods, especially in cases when the number and proportion of true health mentions in the training data is small. 2 authors · Feb 25, 2018
- DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting End-to-end text spotting aims to integrate scene text detection and recognition into a unified framework. Dealing with the relationship between the two sub-tasks plays a pivotal role in designing effective spotters. Although Transformer-based methods eliminate the heuristic post-processing, they still suffer from the synergy issue between the sub-tasks and low training efficiency. In this paper, we present DeepSolo, a simple DETR-like baseline that lets a single Decoder with Explicit Points Solo for text detection and recognition simultaneously. Technically, for each text instance, we represent the character sequence as ordered points and model them with learnable explicit point queries. After passing a single decoder, the point queries have encoded requisite text semantics and locations, thus can be further decoded to the center line, boundary, script, and confidence of text via very simple prediction heads in parallel. Besides, we also introduce a text-matching criterion to deliver more accurate supervisory signals, thus enabling more efficient training. Quantitative experiments on public benchmarks demonstrate that DeepSolo outperforms previous state-of-the-art methods and achieves better training efficiency. In addition, DeepSolo is also compatible with line annotations, which require much less annotation cost than polygons. The code is available at https://github.com/ViTAE-Transformer/DeepSolo. 7 authors · Nov 19, 2022
1 Hubness Reduction Improves Sentence-BERT Semantic Spaces Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text. 2 authors · Nov 30, 2023
- Linking Named Entities in Diderot's Encyclopédie to Wikidata Diderot's Encyclop\'edie is a reference work from XVIIIth century in Europe that aimed at collecting the knowledge of its era. Wikipedia has the same ambition with a much greater scope. However, the lack of digital connection between the two encyclopedias may hinder their comparison and the study of how knowledge has evolved. A key element of Wikipedia is Wikidata that backs the articles with a graph of structured data. In this paper, we describe the annotation of more than 10,300 of the Encyclop\'edie entries with Wikidata identifiers enabling us to connect these entries to the graph. We considered geographic and human entities. The Encyclop\'edie does not contain biographic entries as they mostly appear as subentries of locations. We extracted all the geographic entries and we completely annotated all the entries containing a description of human entities. This represents more than 2,600 links referring to locations or human entities. In addition, we annotated more than 9,500 entries having a geographic content only. We describe the annotation process as well as application examples. This resource is available at https://github.com/pnugues/encyclopedie_1751 1 authors · Jun 5, 2024
- DOLFIN -- Document-Level Financial test set for Machine Translation Despite the strong research interest in document-level Machine Translation (MT), the test sets dedicated to this task are still scarce. The existing test sets mainly cover topics from the general domain and fall short on specialised domains, such as legal and financial. Also, in spite of their document-level aspect, they still follow a sentence-level logic that does not allow for including certain linguistic phenomena such as information reorganisation. In this work, we aim to fill this gap by proposing a novel test set: DOLFIN. The dataset is built from specialised financial documents, and it makes a step towards true document-level MT by abandoning the paradigm of perfectly aligned sentences, presenting data in units of sections rather than sentences. The test set consists of an average of 1950 aligned sections for five language pairs. We present a detailed data collection pipeline that can serve as inspiration for aligning new document-level datasets. We demonstrate the usefulness and quality of this test set by evaluating a number of models. Our results show that the test set is able to discriminate between context-sensitive and context-agnostic models and shows the weaknesses when models fail to accurately translate financial texts. The test set is made public for the community. 5 authors · Feb 5
- Text Summarization with Pretrained Encoders Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings. Our code is available at https://github.com/nlpyang/PreSumm 2 authors · Aug 22, 2019
- Clinical XLNet: Modeling Sequential Clinical Notes and Predicting Prolonged Mechanical Ventilation Clinical notes contain rich data, which is unexploited in predictive modeling compared to structured data. In this work, we developed a new text representation Clinical XLNet for clinical notes which also leverages the temporal information of the sequence of the notes. We evaluated our models on prolonged mechanical ventilation prediction problem and our experiments demonstrated that Clinical XLNet outperforms the best baselines consistently. 7 authors · Dec 26, 2019
2 Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation. 4 authors · Jan 28, 2024
- Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy. 4 authors · Dec 16, 2022
1 Reasoning Over Paragraph Effects in Situations A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%. 4 authors · Aug 16, 2019
23 GeAR: Generation Augmented Retrieval Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research. 9 authors · Jan 6 2
- Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images. 4 authors · May 8, 2020
- Understanding writing style in social media with a supervised contrastively pre-trained transformer Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star) 3 authors · Oct 17, 2023
- Evaluating the Factuality of Zero-shot Summarizers Across Varied Domains Recent work has shown that large language models (LLMs) are capable of generating summaries zero-shot (i.e., without explicit supervision) that, under human assessment, are often comparable or even preferred to manually composed reference summaries. However, this prior work has focussed almost exclusively on evaluating news article summarization. How do zero-shot summarizers perform in other (potentially more specialized) domains? In this work we evaluate zero-shot generated summaries across specialized domains including biomedical articles, and legal bills (in addition to standard news benchmarks for reference). We focus especially on the factuality of outputs. We acquire annotations from domain experts to identify inconsistencies in summaries and systematically categorize these errors. We analyze whether the prevalence of a given domain in the pretraining corpus affects extractiveness and faithfulness of generated summaries of articles in this domain. We release all collected annotations to facilitate additional research toward measuring and realizing factually accurate summarization, beyond news articles. The dataset can be downloaded from https://github.com/sanjanaramprasad/zero_shot_faceval_domains 4 authors · Feb 5, 2024
- Text Annotation Handbook: A Practical Guide for Machine Learning Projects This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers. 8 authors · Oct 18, 2023
- Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model Generative foundation models have advanced large-scale text-driven natural image generation, becoming a prominent research trend across various vertical domains. However, in the remote sensing field, there is still a lack of research on large-scale text-to-image (text2image) generation technology. Existing remote sensing image-text datasets are small in scale and confined to specific geographic areas and scene types. Besides, existing text2image methods have struggled to achieve global-scale, multi-resolution controllable, and unbounded image generation. To address these challenges, this paper presents two key contributions: the Git-10M dataset and the Text2Earth foundation model. Git-10M is a global-scale image-text dataset comprising 10 million image-text pairs, 5 times larger than the previous largest one. The dataset covers a wide range of geographic scenes and contains resolution information, significantly surpassing existing datasets in both size and diversity. Building on Git-10M, we propose Text2Earth, a 1.3 billion parameter generative foundation model based on the diffusion framework to model global-scale remote sensing scenes. Text2Earth integrates a resolution guidance mechanism, enabling users to specify image resolutions. A dynamic condition adaptation strategy is proposed for training and inference to improve image quality. Text2Earth excels in zero-shot text2image generation and demonstrates robust generalization and flexibility across multiple tasks, including unbounded scene construction, image editing, and cross-modal image generation. This robust capability surpasses previous models restricted to the basic fixed size and limited scene types. On the previous benchmark dataset, Text2Earth outperforms previous models with an improvement of +26.23 FID and +20.95% Zero-shot Cls-OA metric.Our project page is https://chen-yang-liu.github.io/Text2Earth 5 authors · Jan 1
- Detecting fake news by enhanced text representation with multi-EDU-structure awareness Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods. 4 authors · May 30, 2022
- Learning Semantic Correspondences in Technical Documentation We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals. 2 authors · May 13, 2017
- Constructing Datasets for Multi-hop Reading Comprehension Across Documents Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement. 3 authors · Oct 17, 2017
- Simple Applications of BERT for Ad Hoc Document Retrieval Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of. 3 authors · Mar 26, 2019
- Rethinking Search: Making Domain Experts out of Dilettantes When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice. 4 authors · May 5, 2021
- Towards Emotion-Based Synthetic Consciousness: Using LLMs to Estimate Emotion Probability Vectors This paper shows how LLMs (Large Language Models) may be used to estimate a summary of the emotional state associated with piece of text. The summary of emotional state is a dictionary of words used to describe emotion together with the probability of the word appearing after a prompt comprising the original text and an emotion eliciting tail. Through emotion analysis of Amazon product reviews we demonstrate emotion descriptors can be mapped into a PCA type space. It was hoped that text descriptions of actions to improve a current text described state could also be elicited through a tail prompt. Experiment seemed to indicate that this is not straightforward to make work. This failure put our hoped for selection of action via choosing the best predict ed outcome via comparing emotional responses out of reach for the moment. 2 authors · Oct 9, 2023
1 Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased. 5 authors · Aug 25, 2023
- MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance A robust evaluation metric has a profound impact on the development of text generation systems. A desirable metric compares system output against references based on their semantics rather than surface forms. In this paper we investigate strategies to encode system and reference texts to devise a metric that shows a high correlation with human judgment of text quality. We validate our new metric, namely MoverScore, on a number of text generation tasks including summarization, machine translation, image captioning, and data-to-text generation, where the outputs are produced by a variety of neural and non-neural systems. Our findings suggest that metrics combining contextualized representations with a distance measure perform the best. Such metrics also demonstrate strong generalization capability across tasks. For ease-of-use we make our metrics available as web service. 6 authors · Sep 5, 2019
54 PDFTriage: Question Answering over Long, Structured Documents Large Language Models (LLMs) have issues with document question answering (QA) in situations where the document is unable to fit in the small context length of an LLM. To overcome this issue, most existing works focus on retrieving the relevant context from the document, representing them as plain text. However, documents such as PDFs, web pages, and presentations are naturally structured with different pages, tables, sections, and so on. Representing such structured documents as plain text is incongruous with the user's mental model of these documents with rich structure. When a system has to query the document for context, this incongruity is brought to the fore, and seemingly trivial questions can trip up the QA system. To bridge this fundamental gap in handling structured documents, we propose an approach called PDFTriage that enables models to retrieve the context based on either structure or content. Our experiments demonstrate the effectiveness of the proposed PDFTriage-augmented models across several classes of questions where existing retrieval-augmented LLMs fail. To facilitate further research on this fundamental problem, we release our benchmark dataset consisting of 900+ human-generated questions over 80 structured documents from 10 different categories of question types for document QA. 6 authors · Sep 16, 2023 9
- Incidental Scene Text Understanding: Recent Progresses on ICDAR 2015 Robust Reading Competition Challenge 4 Different from focused texts present in natural images, which are captured with user's intention and intervention, incidental texts usually exhibit much more diversity, variability and complexity, thus posing significant difficulties and challenges for scene text detection and recognition algorithms. The ICDAR 2015 Robust Reading Competition Challenge 4 was launched to assess the performance of existing scene text detection and recognition methods on incidental texts as well as to stimulate novel ideas and solutions. This report is dedicated to briefly introduce our strategies for this challenging problem and compare them with prior arts in this field. 7 authors · Nov 30, 2015
- Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes. 1 authors · Feb 17
67 Thus Spake Long-Context Large Language Model Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs. 13 authors · Feb 24 6
68 YaRN: Efficient Context Window Extension of Large Language Models Rotary Position Embeddings (RoPE) have been shown to effectively encode positional information in transformer-based language models. However, these models fail to generalize past the sequence length they were trained on. We present YaRN (Yet another RoPE extensioN method), a compute-efficient method to extend the context window of such models, requiring 10x less tokens and 2.5x less training steps than previous methods. Using YaRN, we show that LLaMA models can effectively utilize and extrapolate to context lengths much longer than their original pre-training would allow, while also surpassing previous the state-of-the-art at context window extension. In addition, we demonstrate that YaRN exhibits the capability to extrapolate beyond the limited context of a fine-tuning dataset. We publish the checkpoints of Llama 2 7B/13B fine-tuned using YaRN with 64k and 128k context windows at https://github.com/jquesnelle/yarn 4 authors · Aug 31, 2023 4
- Vārta: A Large-Scale Headline-Generation Dataset for Indic Languages We present V\=arta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes 41.8 million news articles in 14 different Indic languages (and English), which come from a variety of high-quality sources. To the best of our knowledge, this is the largest collection of curated articles for Indic languages currently available. We use the data collected in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pretrain strong language models that outperform competitive baselines in both NLU and NLG benchmarks. 4 authors · May 9, 2023
2 CodeSearchNet Challenge: Evaluating the State of Semantic Code Search Semantic code search is the task of retrieving relevant code given a natural language query. While related to other information retrieval tasks, it requires bridging the gap between the language used in code (often abbreviated and highly technical) and natural language more suitable to describe vague concepts and ideas. To enable evaluation of progress on code search, we are releasing the CodeSearchNet Corpus and are presenting the CodeSearchNet Challenge, which consists of 99 natural language queries with about 4k expert relevance annotations of likely results from CodeSearchNet Corpus. The corpus contains about 6 million functions from open-source code spanning six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). The CodeSearchNet Corpus also contains automatically generated query-like natural language for 2 million functions, obtained from mechanically scraping and preprocessing associated function documentation. In this article, we describe the methodology used to obtain the corpus and expert labels, as well as a number of simple baseline solutions for the task. We hope that CodeSearchNet Challenge encourages researchers and practitioners to study this interesting task further and will host a competition and leaderboard to track the progress on the challenge. We are also keen on extending CodeSearchNet Challenge to more queries and programming languages in the future. 5 authors · Sep 20, 2019
- Neural Text Summarization: A Critical Evaluation Text summarization aims at compressing long documents into a shorter form that conveys the most important parts of the original document. Despite increased interest in the community and notable research effort, progress on benchmark datasets has stagnated. We critically evaluate key ingredients of the current research setup: datasets, evaluation metrics, and models, and highlight three primary shortcomings: 1) automatically collected datasets leave the task underconstrained and may contain noise detrimental to training and evaluation, 2) current evaluation protocol is weakly correlated with human judgment and does not account for important characteristics such as factual correctness, 3) models overfit to layout biases of current datasets and offer limited diversity in their outputs. 5 authors · Aug 23, 2019
- ICL Markup: Structuring In-Context Learning using Soft-Token Tags Large pretrained language models (LLMs) can be rapidly adapted to a wide variety of tasks via a text-to-text approach, where the instruction and input are fed to the model in natural language. Combined with in-context learning (ICL), this paradigm is impressively flexible and powerful. However, it also burdens users with an overwhelming number of choices, many of them arbitrary. Inspired by markup languages like HTML, we contribute a method of using soft-token tags to compose prompt templates. This approach reduces arbitrary decisions and streamlines the application of ICL. Our method is a form of meta-learning for ICL; it learns these tags in advance during a parameter-efficient fine-tuning ``warm-up'' process. The tags can subsequently be used in templates for ICL on new, unseen tasks without any additional fine-tuning. Our experiments with this approach yield promising initial results, improving LLM performance on important enterprise applications such as few-shot and open-world intent detection, as well as text classification in news and legal domains. 3 authors · Dec 12, 2023
- StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance . 7 authors · Oct 16, 2024
3 Distributed Representations of Words and Phrases and their Compositionality The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 5 authors · Oct 16, 2013
1 SCROLLS: Standardized CompaRison Over Long Language Sequences NLP benchmarks have largely focused on short texts, such as sentences and paragraphs, even though long texts comprise a considerable amount of natural language in the wild. We introduce SCROLLS, a suite of tasks that require reasoning over long texts. We examine existing long-text datasets, and handpick ones where the text is naturally long, while prioritizing tasks that involve synthesizing information across the input. SCROLLS contains summarization, question answering, and natural language inference tasks, covering multiple domains, including literature, science, business, and entertainment. Initial baselines, including Longformer Encoder-Decoder, indicate that there is ample room for improvement on SCROLLS. We make all datasets available in a unified text-to-text format and host a live leaderboard to facilitate research on model architecture and pretraining methods. 11 authors · Jan 10, 2022
1 Text Detection and Recognition in the Wild: A Review Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques. 5 authors · Jun 7, 2020
1 Know thy corpus! Robust methods for digital curation of Web corpora This paper proposes a novel framework for digital curation of Web corpora in order to provide robust estimation of their parameters, such as their composition and the lexicon. In recent years language models pre-trained on large corpora emerged as clear winners in numerous NLP tasks, but no proper analysis of the corpora which led to their success has been conducted. The paper presents a procedure for robust frequency estimation, which helps in establishing the core lexicon for a given corpus, as well as a procedure for estimating the corpus composition via unsupervised topic models and via supervised genre classification of Web pages. The results of the digital curation study applied to several Web-derived corpora demonstrate their considerable differences. First, this concerns different frequency bursts which impact the core lexicon obtained from each corpus. Second, this concerns the kinds of texts they contain. For example, OpenWebText contains considerably more topical news and political argumentation in comparison to ukWac or Wikipedia. The tools and the results of analysis have been released. 1 authors · Mar 13, 2020
- BanglaAbuseMeme: A Dataset for Bengali Abusive Meme Classification The dramatic increase in the use of social media platforms for information sharing has also fueled a steep growth in online abuse. A simple yet effective way of abusing individuals or communities is by creating memes, which often integrate an image with a short piece of text layered on top of it. Such harmful elements are in rampant use and are a threat to online safety. Hence it is necessary to develop efficient models to detect and flag abusive memes. The problem becomes more challenging in a low-resource setting (e.g., Bengali memes, i.e., images with Bengali text embedded on it) because of the absence of benchmark datasets on which AI models could be trained. In this paper we bridge this gap by building a Bengali meme dataset. To setup an effective benchmark we implement several baseline models for classifying abusive memes using this dataset. We observe that multimodal models that use both textual and visual information outperform unimodal models. Our best-performing model achieves a macro F1 score of 70.51. Finally, we perform a qualitative error analysis of the misclassified memes of the best-performing text-based, image-based and multimodal models. 2 authors · Oct 18, 2023
- MultiParaDetox: Extending Text Detoxification with Parallel Data to New Languages Text detoxification is a textual style transfer (TST) task where a text is paraphrased from a toxic surface form, e.g. featuring rude words, to the neutral register. Recently, text detoxification methods found their applications in various task such as detoxification of Large Language Models (LLMs) (Leong et al., 2023; He et al., 2024; Tang et al., 2023) and toxic speech combating in social networks (Deng et al., 2023; Mun et al., 2023; Agarwal et al., 2023). All these applications are extremely important to ensure safe communication in modern digital worlds. However, the previous approaches for parallel text detoxification corpora collection -- ParaDetox (Logacheva et al., 2022) and APPADIA (Atwell et al., 2022) -- were explored only in monolingual setup. In this work, we aim to extend ParaDetox pipeline to multiple languages presenting MultiParaDetox to automate parallel detoxification corpus collection for potentially any language. Then, we experiment with different text detoxification models -- from unsupervised baselines to LLMs and fine-tuned models on the presented parallel corpora -- showing the great benefit of parallel corpus presence to obtain state-of-the-art text detoxification models for any language. 3 authors · Apr 2, 2024
- Towards Improving Document Understanding: An Exploration on Text-Grounding via MLLMs In the field of document understanding, significant advances have been made in the fine-tuning of Multimodal Large Language Models (MLLMs) with instruction-following data. Nevertheless, the potential of text-grounding capability within text-rich scenarios remains underexplored. In this paper, we present a text-grounding document understanding model, termed TGDoc, which addresses this deficiency by enhancing MLLMs with the ability to discern the spatial positioning of text within images. Empirical evidence suggests that text-grounding improves the model's interpretation of textual content, thereby elevating its proficiency in comprehending text-rich images. Specifically, we compile a dataset containing 99K PowerPoint presentations sourced from the internet. We formulate instruction tuning tasks including text detection, recognition, and spotting to facilitate the cohesive alignment between the visual encoder and large language model. Moreover, we curate a collection of text-rich images and prompt the text-only GPT-4 to generate 12K high-quality conversations, featuring textual locations within text-rich scenarios. By integrating text location data into the instructions, TGDoc is adept at discerning text locations during the visual question process. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple text-rich benchmarks, validating the effectiveness of our method. 5 authors · Nov 22, 2023
- Using clarification questions to improve software developers' Web search Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals. 2 authors · Jul 26, 2022
24 Platypus: Quick, Cheap, and Powerful Refinement of LLMs We present Platypus, a family of fine-tuned and merged Large Language Models (LLMs) that achieves the strongest performance and currently stands at first place in HuggingFace's Open LLM Leaderboard as of the release date of this work. In this work we describe (1) our curated dataset Open-Platypus, that is a subset of other open datasets and which we release to the public (2) our process of fine-tuning and merging LoRA modules in order to conserve the strong prior of pretrained LLMs, while bringing specific domain knowledge to the surface (3) our efforts in checking for test data leaks and contamination in the training data, which can inform future research. Specifically, the Platypus family achieves strong performance in quantitative LLM metrics across model sizes, topping the global Open LLM leaderboard while using just a fraction of the fine-tuning data and overall compute that are required for other state-of-the-art fine-tuned LLMs. In particular, a 13B Platypus model can be trained on a single A100 GPU using 25k questions in 5 hours. This is a testament of the quality of our Open-Platypus dataset, and opens opportunities for more improvements in the field. Project page: https://platypus-llm.github.io 3 authors · Aug 14, 2023 4
- MemeSense: An Adaptive In-Context Framework for Social Commonsense Driven Meme Moderation Memes present unique moderation challenges due to their subtle, multimodal interplay of images, text, and social context. Standard systems relying predominantly on explicit textual cues often overlook harmful content camouflaged by irony, symbolism, or cultural references. To address this gap, we introduce MemeSense, an adaptive in-context learning framework that fuses social commonsense reasoning with visually and semantically related reference examples. By encoding crucial task information into a learnable cognitive shift vector, MemeSense effectively balances lexical, visual, and ethical considerations, enabling precise yet context-aware meme intervention. Extensive evaluations on a curated set of implicitly harmful memes demonstrate that MemeSense substantially outperforms strong baselines, paving the way for safer online communities. Code and data available at: https://github.com/sayantan11995/MemeSense 7 authors · Feb 16
2 RuSentNE-2023: Evaluating Entity-Oriented Sentiment Analysis on Russian News Texts The paper describes the RuSentNE-2023 evaluation devoted to targeted sentiment analysis in Russian news texts. The task is to predict sentiment towards a named entity in a single sentence. The dataset for RuSentNE-2023 evaluation is based on the Russian news corpus RuSentNE having rich sentiment-related annotation. The corpus is annotated with named entities and sentiments towards these entities, along with related effects and emotional states. The evaluation was organized using the CodaLab competition framework. The main evaluation measure was macro-averaged measure of positive and negative classes. The best results achieved were of 66% Macro F-measure (Positive+Negative classes). We also tested ChatGPT on the test set from our evaluation and found that the zero-shot answers provided by ChatGPT reached 60% of the F-measure, which corresponds to 4th place in the evaluation. ChatGPT also provided detailed explanations of its conclusion. This can be considered as quite high for zero-shot application. 3 authors · May 28, 2023
2 The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America Chronicling America is a product of the National Digital Newspaper Program, a partnership between the Library of Congress and the National Endowment for the Humanities to digitize historic newspapers. Over 16 million pages of historic American newspapers have been digitized for Chronicling America to date, complete with high-resolution images and machine-readable METS/ALTO OCR. Of considerable interest to Chronicling America users is a semantified corpus, complete with extracted visual content and headlines. To accomplish this, we introduce a visual content recognition model trained on bounding box annotations of photographs, illustrations, maps, comics, and editorial cartoons collected as part of the Library of Congress's Beyond Words crowdsourcing initiative and augmented with additional annotations including those of headlines and advertisements. We describe our pipeline that utilizes this deep learning model to extract 7 classes of visual content: headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements, complete with textual content such as captions derived from the METS/ALTO OCR, as well as image embeddings for fast image similarity querying. We report the results of running the pipeline on 16.3 million pages from the Chronicling America corpus and describe the resulting Newspaper Navigator dataset, the largest dataset of extracted visual content from historic newspapers ever produced. The Newspaper Navigator dataset, finetuned visual content recognition model, and all source code are placed in the public domain for unrestricted re-use. 9 authors · May 4, 2020
- Constrained Graphic Layout Generation via Latent Optimization It is common in graphic design humans visually arrange various elements according to their design intent and semantics. For example, a title text almost always appears on top of other elements in a document. In this work, we generate graphic layouts that can flexibly incorporate such design semantics, either specified implicitly or explicitly by a user. We optimize using the latent space of an off-the-shelf layout generation model, allowing our approach to be complementary to and used with existing layout generation models. Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem where design constraints are used for element alignment, overlap avoidance, or any other user-specified relationship. We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model. The code is available at https://github.com/ktrk115/const_layout . 4 authors · Aug 2, 2021
- Get What You Want, Not What You Don't: Image Content Suppression for Text-to-Image Diffusion Models The success of recent text-to-image diffusion models is largely due to their capacity to be guided by a complex text prompt, which enables users to precisely describe the desired content. However, these models struggle to effectively suppress the generation of undesired content, which is explicitly requested to be omitted from the generated image in the prompt. In this paper, we analyze how to manipulate the text embeddings and remove unwanted content from them. We introduce two contributions, which we refer to as soft-weighted regularization and inference-time text embedding optimization. The first regularizes the text embedding matrix and effectively suppresses the undesired content. The second method aims to further suppress the unwanted content generation of the prompt, and encourages the generation of desired content. We evaluate our method quantitatively and qualitatively on extensive experiments, validating its effectiveness. Furthermore, our method is generalizability to both the pixel-space diffusion models (i.e. DeepFloyd-IF) and the latent-space diffusion models (i.e. Stable Diffusion). 7 authors · Feb 7, 2024
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
- Text Detoxification using Large Pre-trained Neural Models We present two novel unsupervised methods for eliminating toxicity in text. Our first method combines two recent ideas: (1) guidance of the generation process with small style-conditional language models and (2) use of paraphrasing models to perform style transfer. We use a well-performing paraphraser guided by style-trained language models to keep the text content and remove toxicity. Our second method uses BERT to replace toxic words with their non-offensive synonyms. We make the method more flexible by enabling BERT to replace mask tokens with a variable number of words. Finally, we present the first large-scale comparative study of style transfer models on the task of toxicity removal. We compare our models with a number of methods for style transfer. The models are evaluated in a reference-free way using a combination of unsupervised style transfer metrics. Both methods we suggest yield new SOTA results. 7 authors · Sep 18, 2021
1 Text Embeddings Reveal (Almost) As Much As Text How much private information do text embeddings reveal about the original text? We investigate the problem of embedding inversion, reconstructing the full text represented in dense text embeddings. We frame the problem as controlled generation: generating text that, when reembedded, is close to a fixed point in latent space. We find that although a na\"ive model conditioned on the embedding performs poorly, a multi-step method that iteratively corrects and re-embeds text is able to recover 92% of 32-token text inputs exactly. We train our model to decode text embeddings from two state-of-the-art embedding models, and also show that our model can recover important personal information (full names) from a dataset of clinical notes. Our code is available on Github: https://github.com/jxmorris12/vec2text{github.com/jxmorris12/vec2text}. 4 authors · Oct 10, 2023
6 MTEB: Massive Text Embedding Benchmark Text embeddings are commonly evaluated on a small set of datasets from a single task not covering their possible applications to other tasks. It is unclear whether state-of-the-art embeddings on semantic textual similarity (STS) can be equally well applied to other tasks like clustering or reranking. This makes progress in the field difficult to track, as various models are constantly being proposed without proper evaluation. To solve this problem, we introduce the Massive Text Embedding Benchmark (MTEB). MTEB spans 8 embedding tasks covering a total of 58 datasets and 112 languages. Through the benchmarking of 33 models on MTEB, we establish the most comprehensive benchmark of text embeddings to date. We find that no particular text embedding method dominates across all tasks. This suggests that the field has yet to converge on a universal text embedding method and scale it up sufficiently to provide state-of-the-art results on all embedding tasks. MTEB comes with open-source code and a public leaderboard at https://github.com/embeddings-benchmark/mteb. 4 authors · Oct 13, 2022 1
- MixSumm: Topic-based Data Augmentation using LLMs for Low-resource Extractive Text Summarization Low-resource extractive text summarization is a vital but heavily underexplored area of research. Prior literature either focuses on abstractive text summarization or prompts a large language model (LLM) like GPT-3 directly to generate summaries. In this work, we propose MixSumm for low-resource extractive text summarization. Specifically, MixSumm prompts an open-source LLM, LLaMA-3-70b, to generate documents that mix information from multiple topics as opposed to generating documents without mixup, and then trains a summarization model on the generated dataset. We use ROUGE scores and L-Eval, a reference-free LLaMA-3-based evaluation method to measure the quality of generated summaries. We conduct extensive experiments on a challenging text summarization benchmark comprising the TweetSumm, WikiHow, and ArXiv/PubMed datasets and show that our LLM-based data augmentation framework outperforms recent prompt-based approaches for low-resource extractive summarization. Additionally, our results also demonstrate effective knowledge distillation from LLaMA-3-70b to a small BERT-based extractive summarizer. 2 authors · Jul 9, 2024
2 Echoes from Alexandria: A Large Resource for Multilingual Book Summarization In recent years, research in text summarization has mainly focused on the news domain, where texts are typically short and have strong layout features. The task of full-book summarization presents additional challenges which are hard to tackle with current resources, due to their limited size and availability in English only. To overcome these limitations, we present "Echoes from Alexandria", or in shortened form, "Echoes", a large resource for multilingual book summarization. Echoes features three novel datasets: i) Echo-Wiki, for multilingual book summarization, ii) Echo-XSum, for extremely-compressive multilingual book summarization, and iii) Echo-FairySum, for extractive book summarization. To the best of our knowledge, Echoes, with its thousands of books and summaries, is the largest resource, and the first to be multilingual, featuring 5 languages and 25 language pairs. In addition to Echoes, we also introduce a new extractive-then-abstractive baseline, and, supported by our experimental results and manual analysis of the summaries generated, we argue that this baseline is more suitable for book summarization than purely-abstractive approaches. We release our resource and software at https://github.com/Babelscape/echoes-from-alexandria in the hope of fostering innovative research in multilingual book summarization. 4 authors · Jun 7, 2023
- Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval We propose a simple and efficient multi-hop dense retrieval approach for answering complex open-domain questions, which achieves state-of-the-art performance on two multi-hop datasets, HotpotQA and multi-evidence FEVER. Contrary to previous work, our method does not require access to any corpus-specific information, such as inter-document hyperlinks or human-annotated entity markers, and can be applied to any unstructured text corpus. Our system also yields a much better efficiency-accuracy trade-off, matching the best published accuracy on HotpotQA while being 10 times faster at inference time. 11 authors · Sep 27, 2020
- Sequence-to-Sequence Resources for Catalan In this work, we introduce sequence-to-sequence language resources for Catalan, a moderately under-resourced language, towards two tasks, namely: Summarization and Machine Translation (MT). We present two new abstractive summarization datasets in the domain of newswire. We also introduce a parallel Catalan-English corpus, paired with three different brand new test sets. Finally, we evaluate the data presented with competing state of the art models, and we develop baselines for these tasks using a newly created Catalan BART. We release the resulting resources of this work under open license to encourage the development of language technology in Catalan. 5 authors · Feb 14, 2022
- ChineseWebText 2.0: Large-Scale High-quality Chinese Web Text with Multi-dimensional and fine-grained information During the development of large language models (LLMs), pre-training data play a critical role in shaping LLMs' capabilities. In recent years several large-scale and high-quality pre-training datasets have been released to accelerate the research of LLMs, including ChineseWebText1.0, C4, Pile, WanJuan, MAPCC and others. However, as LLMs continue to evolve, focus has increasingly shifted to domain-specific capabilities and safety concerns, making those previous coarse-grained texts insufficient for meeting training requirements. Furthermore, fine-grained information, such as quality, domain and toxicity, is becoming increasingly important in building powerful and reliable LLMs for various scenarios. To address these challenges, in this paper we propose a new tool-chain called MDFG-tool for constructing large-scale and high-quality Chinese datasets with multi-dimensional and fine-grained information. First, we employ manually crafted rules to discard explicit noisy texts from raw contents. Second, the quality evaluation model, domain classifier, and toxicity evaluation model are well-designed to assess the remaining cleaned data respectively. Finally, we integrate these three types of fine-grained information for each text. With this approach, we release the largest, high-quality and fine-grained Chinese text ChineseWebText2.0, which consists of 3.8TB and each text is associated with a quality score, domain labels, a toxicity label and a toxicity score, facilitating the LLM researchers to select data based on various types of fine-grained information. The data, codes and the tool-chain are available on this website https://github.com/CASIA-LM/ChineseWebText-2.0 8 authors · Nov 29, 2024
- NextLevelBERT: Investigating Masked Language Modeling with Higher-Level Representations for Long Documents While (large) language models have significantly improved over the last years, they still struggle to sensibly process long sequences found, e.g., in books, due to the quadratic scaling of the underlying attention mechanism. To address this, we propose NextLevelBERT, a Masked Language Model operating not on tokens, but on higher-level semantic representations in the form of text embeddings. We pretrain NextLevelBERT to predict the vector representation of entire masked text chunks and evaluate the effectiveness of the resulting document vectors on three task types: 1) Semantic Textual Similarity via zero-shot document embeddings, 2) Long document classification, 3) Multiple-choice question answering. We find that next level Masked Language Modeling is an effective technique to tackle long-document use cases and can outperform much larger embedding models as long as the required level of detail is not too high. We make model and code available. 4 authors · Feb 27, 2024
- Composition-contrastive Learning for Sentence Embeddings Vector representations of natural language are ubiquitous in search applications. Recently, various methods based on contrastive learning have been proposed to learn textual representations from unlabelled data; by maximizing alignment between minimally-perturbed embeddings of the same text, and encouraging a uniform distribution of embeddings across a broader corpus. Differently, we propose maximizing alignment between texts and a composition of their phrasal constituents. We consider several realizations of this objective and elaborate the impact on representations in each case. Experimental results on semantic textual similarity tasks show improvements over baselines that are comparable with state-of-the-art approaches. Moreover, this work is the first to do so without incurring costs in auxiliary training objectives or additional network parameters. 2 authors · Jul 14, 2023
- OffensiveLang: A Community Based Implicit Offensive Language Dataset The widespread presence of hateful languages on social media has resulted in adverse effects on societal well-being. As a result, addressing this issue with high priority has become very important. Hate speech or offensive languages exist in both explicit and implicit forms, with the latter being more challenging to detect. Current research in this domain encounters several challenges. Firstly, the existing datasets primarily rely on the collection of texts containing explicit offensive keywords, making it challenging to capture implicitly offensive contents that are devoid of these keywords. Secondly, common methodologies tend to focus solely on textual analysis, neglecting the valuable insights that community information can provide. In this research paper, we introduce a novel dataset OffensiveLang, a community based implicit offensive language dataset generated by ChatGPT 3.5 containing data for 38 different target groups. Despite limitations in generating offensive texts using ChatGPT due to ethical constraints, we present a prompt-based approach that effectively generates implicit offensive languages. To ensure data quality, we evaluate the dataset with human. Additionally, we employ a prompt-based zero-shot method with ChatGPT and compare the detection results between human annotation and ChatGPT annotation. We utilize existing state-of-the-art models to see how effective they are in detecting such languages. The dataset is available here: https://github.com/AmitDasRup123/OffensiveLang 13 authors · Mar 4, 2024
1 Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations We introduce sub-sentence encoder, a contrastively-learned contextual embedding model for fine-grained semantic representation of text. In contrast to the standard practice with sentence embeddings, where the meaning of an entire sequence of text is encoded into a fixed-length vector, the sub-sentence encoder learns to produce distinct contextual embeddings corresponding to different atomic propositions, i.e. atomic units of meaning expressed within a text sequence. The sub-sentence embeddings are contrastively learned to recognize (inferred) semantic equivalence between propositions across different text sequences. Our experiments show the effectiveness of sub-sentence encoders in applications, such as retrieving supporting facts for fine-grained text attribution or recognizing the conditional semantic similarity between texts. In practice, we demonstrate that sub-sentence encoders keep the same level of inference cost and space complexity compared to sentence encoders. 10 authors · Nov 7, 2023
1 Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus Recent literature has underscored the importance of dataset documentation work for machine learning, and part of this work involves addressing "documentation debt" for datasets that have been used widely but documented sparsely. This paper aims to help address documentation debt for BookCorpus, a popular text dataset for training large language models. Notably, researchers have used BookCorpus to train OpenAI's GPT-N models and Google's BERT models, even though little to no documentation exists about the dataset's motivation, composition, collection process, etc. We offer a preliminary datasheet that provides key context and information about BookCorpus, highlighting several notable deficiencies. In particular, we find evidence that (1) BookCorpus likely violates copyright restrictions for many books, (2) BookCorpus contains thousands of duplicated books, and (3) BookCorpus exhibits significant skews in genre representation. We also find hints of other potential deficiencies that call for future research, including problematic content, potential skews in religious representation, and lopsided author contributions. While more work remains, this initial effort to provide a datasheet for BookCorpus adds to growing literature that urges more careful and systematic documentation for machine learning datasets. 2 authors · May 11, 2021
33 From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting Selecting the ``right'' amount of information to include in a summary is a difficult task. A good summary should be detailed and entity-centric without being overly dense and hard to follow. To better understand this tradeoff, we solicit increasingly dense GPT-4 summaries with what we refer to as a ``Chain of Density'' (CoD) prompt. Specifically, GPT-4 generates an initial entity-sparse summary before iteratively incorporating missing salient entities without increasing the length. Summaries generated by CoD are more abstractive, exhibit more fusion, and have less of a lead bias than GPT-4 summaries generated by a vanilla prompt. We conduct a human preference study on 100 CNN DailyMail articles and find that that humans prefer GPT-4 summaries that are more dense than those generated by a vanilla prompt and almost as dense as human written summaries. Qualitative analysis supports the notion that there exists a tradeoff between informativeness and readability. 500 annotated CoD summaries, as well as an extra 5,000 unannotated summaries, are freely available on HuggingFace (https://huggingface.co/datasets/griffin/chain_of_density). 5 authors · Sep 8, 2023
- Paraphrasing with Large Language Models Recently, large language models such as GPT-2 have shown themselves to be extremely adept at text generation and have also been able to achieve high-quality results in many downstream NLP tasks such as text classification, sentiment analysis and question answering with the aid of fine-tuning. We present a useful technique for using a large language model to perform the task of paraphrasing on a variety of texts and subjects. Our approach is demonstrated to be capable of generating paraphrases not only at a sentence level but also for longer spans of text such as paragraphs without needing to break the text into smaller chunks. 2 authors · Nov 21, 2019
- Analyzing Norm Violations in Live-Stream Chat Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35\%. 9 authors · May 18, 2023
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
15 Nomic Embed: Training a Reproducible Long Context Text Embedder This technical report describes the training of nomic-embed-text-v1, the first fully reproducible, open-source, open-weights, open-data, 8192 context length English text embedding model that outperforms both OpenAI Ada-002 and OpenAI text-embedding-3-small on short and long-context tasks. We release the training code and model weights under an Apache 2 license. In contrast with other open-source models, we release a training data loader with 235 million curated text pairs that allows for the full replication of nomic-embed-text-v1. You can find code and data to replicate the model at https://github.com/nomic-ai/contrastors 4 authors · Feb 2, 2024 1
3 ParaNames 1.0: Creating an Entity Name Corpus for 400+ Languages using Wikidata We introduce ParaNames, a massively multilingual parallel name resource consisting of 140 million names spanning over 400 languages. Names are provided for 16.8 million entities, and each entity is mapped from a complex type hierarchy to a standard type (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate the usefulness of ParaNames on two tasks. First, we perform canonical name translation between English and 17 other languages. Second, we use it as a gazetteer for multilingual named entity recognition, obtaining performance improvements on all 10 languages evaluated. 2 authors · May 15, 2024
1 Multilingual and Explainable Text Detoxification with Parallel Corpora Even with various regulations in place across countries and social media platforms (Government of India, 2021; European Parliament and Council of the European Union, 2022, digital abusive speech remains a significant issue. One potential approach to address this challenge is automatic text detoxification, a text style transfer (TST) approach that transforms toxic language into a more neutral or non-toxic form. To date, the availability of parallel corpora for the text detoxification task (Logachevavet al., 2022; Atwell et al., 2022; Dementievavet al., 2024a) has proven to be crucial for state-of-the-art approaches. With this work, we extend parallel text detoxification corpus to new languages -- German, Chinese, Arabic, Hindi, and Amharic -- testing in the extensive multilingual setup TST baselines. Next, we conduct the first of its kind an automated, explainable analysis of the descriptive features of both toxic and non-toxic sentences, diving deeply into the nuances, similarities, and differences of toxicity and detoxification across 9 languages. Finally, based on the obtained insights, we experiment with a novel text detoxification method inspired by the Chain-of-Thoughts reasoning approach, enhancing the prompting process through clustering on relevant descriptive attributes. 14 authors · Dec 16, 2024
- Do Long-Range Language Models Actually Use Long-Range Context? Language models are generally trained on short, truncated input sequences, which limits their ability to use discourse-level information present in long-range context to improve their predictions. Recent efforts to improve the efficiency of self-attention have led to a proliferation of long-range Transformer language models, which can process much longer sequences than models of the past. However, the ways in which such models take advantage of the long-range context remain unclear. In this paper, we perform a fine-grained analysis of two long-range Transformer language models (including the Routing Transformer, which achieves state-of-the-art perplexity on the PG-19 long-sequence LM benchmark dataset) that accept input sequences of up to 8K tokens. Our results reveal that providing long-range context (i.e., beyond the previous 2K tokens) to these models only improves their predictions on a small set of tokens (e.g., those that can be copied from the distant context) and does not help at all for sentence-level prediction tasks. Finally, we discover that PG-19 contains a variety of different document types and domains, and that long-range context helps most for literary novels (as opposed to textbooks or magazines). 4 authors · Sep 19, 2021
- News Category Dataset People rely on news to know what is happening around the world and inform their daily lives. In today's world, when the proliferation of fake news is rampant, having a large-scale and high-quality source of authentic news articles with the published category information is valuable to learning authentic news' Natural Language syntax and semantics. As part of this work, we present a News Category Dataset that contains around 210k news headlines from the year 2012 to 2022 obtained from HuffPost, along with useful metadata to enable various NLP tasks. In this paper, we also produce some novel insights from the dataset and describe various existing and potential applications of our dataset. 1 authors · Sep 23, 2022
- Multimodal datasets: misogyny, pornography, and malignant stereotypes We have now entered the era of trillion parameter machine learning models trained on billion-sized datasets scraped from the internet. The rise of these gargantuan datasets has given rise to formidable bodies of critical work that has called for caution while generating these large datasets. These address concerns surrounding the dubious curation practices used to generate these datasets, the sordid quality of alt-text data available on the world wide web, the problematic content of the CommonCrawl dataset often used as a source for training large language models, and the entrenched biases in large-scale visio-linguistic models (such as OpenAI's CLIP model) trained on opaque datasets (WebImageText). In the backdrop of these specific calls of caution, we examine the recently released LAION-400M dataset, which is a CLIP-filtered dataset of Image-Alt-text pairs parsed from the Common-Crawl dataset. We found that the dataset contains, troublesome and explicit images and text pairs of rape, pornography, malign stereotypes, racist and ethnic slurs, and other extremely problematic content. We outline numerous implications, concerns and downstream harms regarding the current state of large scale datasets while raising open questions for various stakeholders including the AI community, regulators, policy makers and data subjects. 3 authors · Oct 5, 2021
- TCIG: Two-Stage Controlled Image Generation with Quality Enhancement through Diffusion In recent years, significant progress has been made in the development of text-to-image generation models. However, these models still face limitations when it comes to achieving full controllability during the generation process. Often, specific training or the use of limited models is required, and even then, they have certain restrictions. To address these challenges, A two-stage method that effectively combines controllability and high quality in the generation of images is proposed. This approach leverages the expertise of pre-trained models to achieve precise control over the generated images, while also harnessing the power of diffusion models to achieve state-of-the-art quality. By separating controllability from high quality, This method achieves outstanding results. It is compatible with both latent and image space diffusion models, ensuring versatility and flexibility. Moreover, This approach consistently produces comparable outcomes to the current state-of-the-art methods in the field. Overall, This proposed method represents a significant advancement in text-to-image generation, enabling improved controllability without compromising on the quality of the generated images. 1 authors · Mar 2, 2024
13 FLIRT: Feedback Loop In-context Red Teaming Warning: this paper contains content that may be inappropriate or offensive. As generative models become available for public use in various applications, testing and analyzing vulnerabilities of these models has become a priority. Here we propose an automatic red teaming framework that evaluates a given model and exposes its vulnerabilities against unsafe and inappropriate content generation. Our framework uses in-context learning in a feedback loop to red team models and trigger them into unsafe content generation. We propose different in-context attack strategies to automatically learn effective and diverse adversarial prompts for text-to-image models. Our experiments demonstrate that compared to baseline approaches, our proposed strategy is significantly more effective in exposing vulnerabilities in Stable Diffusion (SD) model, even when the latter is enhanced with safety features. Furthermore, we demonstrate that the proposed framework is effective for red teaming text-to-text models, resulting in significantly higher toxic response generation rate compared to previously reported numbers. 9 authors · Aug 8, 2023
- LLMs Perform Poorly at Concept Extraction in Cyber-security Research Literature The cybersecurity landscape evolves rapidly and poses threats to organizations. To enhance resilience, one needs to track the latest developments and trends in the domain. It has been demonstrated that standard bibliometrics approaches show their limits in such a fast-evolving domain. For this purpose, we use large language models (LLMs) to extract relevant knowledge entities from cybersecurity-related texts. We use a subset of arXiv preprints on cybersecurity as our data and compare different LLMs in terms of entity recognition (ER) and relevance. The results suggest that LLMs do not produce good knowledge entities that reflect the cybersecurity context, but our results show some potential for noun extractors. For this reason, we developed a noun extractor boosted with some statistical analysis to extract specific and relevant compound nouns from the domain. Later, we tested our model to identify trends in the LLM domain. We observe some limitations, but it offers promising results to monitor the evolution of emergent trends. 4 authors · Dec 12, 2023
- ParaNames: A Massively Multilingual Entity Name Corpus We introduce ParaNames, a multilingual parallel name resource consisting of 118 million names spanning across 400 languages. Names are provided for 13.6 million entities which are mapped to standardized entity types (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to-date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate an application of ParaNames by training a multilingual model for canonical name translation to and from English. Our resource is released under a Creative Commons license (CC BY 4.0) at https://github.com/bltlab/paranames. 2 authors · Feb 28, 2022
1 AI-generated text boundary detection with RoFT Due to the rapid development of large language models, people increasingly often encounter texts that may start as written by a human but continue as machine-generated. Detecting the boundary between human-written and machine-generated parts of such texts is a challenging problem that has not received much attention in literature. We attempt to bridge this gap and examine several ways to adapt state of the art artificial text detection classifiers to the boundary detection setting. We push all detectors to their limits, using the Real or Fake text benchmark that contains short texts on several topics and includes generations of various language models. We use this diversity to deeply examine the robustness of all detectors in cross-domain and cross-model settings to provide baselines and insights for future research. In particular, we find that perplexity-based approaches to boundary detection tend to be more robust to peculiarities of domain-specific data than supervised fine-tuning of the RoBERTa model; we also find which features of the text confuse boundary detection algorithms and negatively influence their performance in cross-domain settings. 9 authors · Nov 14, 2023
- A Survey on LLM-generated Text Detection: Necessity, Methods, and Future Directions The powerful ability to understand, follow, and generate complex language emerging from large language models (LLMs) makes LLM-generated text flood many areas of our daily lives at an incredible speed and is widely accepted by humans. As LLMs continue to expand, there is an imperative need to develop detectors that can detect LLM-generated text. This is crucial to mitigate potential misuse of LLMs and safeguard realms like artistic expression and social networks from harmful influence of LLM-generated content. The LLM-generated text detection aims to discern if a piece of text was produced by an LLM, which is essentially a binary classification task. The detector techniques have witnessed notable advancements recently, propelled by innovations in watermarking techniques, zero-shot methods, fine-turning LMs methods, adversarial learning methods, LLMs as detectors, and human-assisted methods. In this survey, we collate recent research breakthroughs in this area and underscore the pressing need to bolster detector research. We also delve into prevalent datasets, elucidating their limitations and developmental requirements. Furthermore, we analyze various LLM-generated text detection paradigms, shedding light on challenges like out-of-distribution problems, potential attacks, and data ambiguity. Conclusively, we highlight interesting directions for future research in LLM-generated text detection to advance the implementation of responsible artificial intelligence (AI). Our aim with this survey is to provide a clear and comprehensive introduction for newcomers while also offering seasoned researchers a valuable update in the field of LLM-generated text detection. The useful resources are publicly available at: https://github.com/NLP2CT/LLM-generated-Text-Detection. 6 authors · Oct 23, 2023
- DOM-LM: Learning Generalizable Representations for HTML Documents HTML documents are an important medium for disseminating information on the Web for human consumption. An HTML document presents information in multiple text formats including unstructured text, structured key-value pairs, and tables. Effective representation of these documents is essential for machine understanding to enable a wide range of applications, such as Question Answering, Web Search, and Personalization. Existing work has either represented these documents using visual features extracted by rendering them in a browser, which is typically computationally expensive, or has simply treated them as plain text documents, thereby failing to capture useful information presented in their HTML structure. We argue that the text and HTML structure together convey important semantics of the content and therefore warrant a special treatment for their representation learning. In this paper, we introduce a novel representation learning approach for web pages, dubbed DOM-LM, which addresses the limitations of existing approaches by encoding both text and DOM tree structure with a transformer-based encoder and learning generalizable representations for HTML documents via self-supervised pre-training. We evaluate DOM-LM on a variety of webpage understanding tasks, including Attribute Extraction, Open Information Extraction, and Question Answering. Our extensive experiments show that DOM-LM consistently outperforms all baselines designed for these tasks. In particular, DOM-LM demonstrates better generalization performance both in few-shot and zero-shot settings, making it attractive for making it suitable for real-world application settings with limited labeled data. 5 authors · Jan 25, 2022
1 SWEb: A Large Web Dataset for the Scandinavian Languages This paper presents the hitherto largest pretraining dataset for the Scandinavian languages: the Scandinavian WEb (SWEb), comprising over one trillion tokens. The paper details the collection and processing pipeline, and introduces a novel model-based text extractor that significantly reduces complexity in comparison with rule-based approaches. We also introduce a new cloze-style benchmark for evaluating language models in Swedish, and use this test to compare models trained on the SWEb data to models trained on FineWeb, with competitive results. All data, models and code are shared openly. 7 authors · Oct 6, 2024
- Statistical Depth for Ranking and Characterizing Transformer-Based Text Embeddings The popularity of transformer-based text embeddings calls for better statistical tools for measuring distributions of such embeddings. One such tool would be a method for ranking texts within a corpus by centrality, i.e. assigning each text a number signifying how representative that text is of the corpus as a whole. However, an intrinsic center-outward ordering of high-dimensional text representations is not trivial. A statistical depth is a function for ranking k-dimensional objects by measuring centrality with respect to some observed k-dimensional distribution. We adopt a statistical depth to measure distributions of transformer-based text embeddings, transformer-based text embedding (TTE) depth, and introduce the practical use of this depth for both modeling and distributional inference in NLP pipelines. We first define TTE depth and an associated rank sum test for determining whether two corpora differ significantly in embedding space. We then use TTE depth for the task of in-context learning prompt selection, showing that this approach reliably improves performance over statistical baseline approaches across six text classification tasks. Finally, we use TTE depth and the associated rank sum test to characterize the distributions of synthesized and human-generated corpora, showing that five recent synthetic data augmentation processes cause a measurable distributional shift away from associated human-generated text. 2 authors · Oct 23, 2023
- Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts Medical vision-and-language pre-training (Med-VLP) has shown promising improvements on many downstream medical tasks owing to its applicability to extracting generic representations from medical images and texts. Practically, there exist two typical types, i.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used. The former is superior at multi-modal tasks owing to the sufficient interaction between modalities; the latter is good at uni-modal and cross-modal tasks due to the single-modality encoding ability. To take advantage of these two types, we propose an effective yet straightforward scheme named PTUnifier to unify the two types. We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts. By doing so, a single model could serve as a foundation model that processes various tasks adopting different input formats (i.e., image-only, text-only, and image-text-pair). Furthermore, we construct a prompt pool (instead of static ones) to improve diversity and scalability. Experimental results show that our approach achieves state-of-the-art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text classification and text summarization), cross-modal tasks (i.e., image-to-text generation and image-text/text-image retrieval), and multi-modal tasks (i.e., visual question answering), demonstrating the effectiveness of our approach. Note that the adoption of prompts is orthogonal to most existing Med-VLP approaches and could be a beneficial and complementary extension to these approaches. 5 authors · Feb 17, 2023
- NS3: Neuro-Symbolic Semantic Code Search Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries. 6 authors · May 21, 2022
- LitSearch: A Retrieval Benchmark for Scientific Literature Search Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case. 6 authors · Jul 10, 2024
5 A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models Text summarization research has undergone several significant transformations with the advent of deep neural networks, pre-trained language models (PLMs), and recent large language models (LLMs). This survey thus provides a comprehensive review of the research progress and evolution in text summarization through the lens of these paradigm shifts. It is organized into two main parts: (1) a detailed overview of datasets, evaluation metrics, and summarization methods before the LLM era, encompassing traditional statistical methods, deep learning approaches, and PLM fine-tuning techniques, and (2) the first detailed examination of recent advancements in benchmarking, modeling, and evaluating summarization in the LLM era. By synthesizing existing literature and presenting a cohesive overview, this survey also discusses research trends, open challenges, and proposes promising research directions in summarization, aiming to guide researchers through the evolving landscape of summarization research. 3 authors · Jun 17, 2024 2
- Key-Element-Informed sLLM Tuning for Document Summarization Remarkable advances in large language models (LLMs) have enabled high-quality text summarization. However, this capability is currently accessible only through LLMs of substantial size or proprietary LLMs with usage fees. In response, smaller-scale LLMs (sLLMs) of easy accessibility and low costs have been extensively studied, yet they often suffer from missing key information and entities, i.e., low relevance, in particular, when input documents are long. We hence propose a key-element-informed instruction tuning for summarization, so-called KEITSum, which identifies key elements in documents and instructs sLLM to generate summaries capturing these key elements. Experimental results on dialogue and news datasets demonstrate that sLLM with KEITSum indeed provides high-quality summarization with higher relevance and less hallucinations, competitive to proprietary LLM. 5 authors · Jun 7, 2024
- ACLSum: A New Dataset for Aspect-based Summarization of Scientific Publications Extensive efforts in the past have been directed toward the development of summarization datasets. However, a predominant number of these resources have been (semi)-automatically generated, typically through web data crawling, resulting in subpar resources for training and evaluating summarization systems, a quality compromise that is arguably due to the substantial costs associated with generating ground-truth summaries, particularly for diverse languages and specialized domains. To address this issue, we present ACLSum, a novel summarization dataset carefully crafted and evaluated by domain experts. In contrast to previous datasets, ACLSum facilitates multi-aspect summarization of scientific papers, covering challenges, approaches, and outcomes in depth. Through extensive experiments, we evaluate the quality of our resource and the performance of models based on pretrained language models and state-of-the-art large language models (LLMs). Additionally, we explore the effectiveness of extractive versus abstractive summarization within the scholarly domain on the basis of automatically discovered aspects. Our results corroborate previous findings in the general domain and indicate the general superiority of end-to-end aspect-based summarization. Our data is released at https://github.com/sobamchan/aclsum. 5 authors · Mar 8, 2024
- FRAKE: Fusional Real-time Automatic Keyword Extraction Keyword extraction is the process of identifying the words or phrases that express the main concepts of text to the best of one's ability. Electronic infrastructure creates a considerable amount of text every day and at all times. This massive volume of documents makes it practically impossible for human resources to study and manage them. Nevertheless, the need for these documents to be accessed efficiently and effectively is evident in numerous purposes. A blog, news article, or technical note is considered a relatively long text since the reader aims to learn the subject based on keywords or topics. Our approach consists of a combination of two models: graph centrality features and textural features. The proposed method has been used to extract the best keyword among the candidate keywords with an optimal combination of graph centralities, such as degree, betweenness, eigenvector, closeness centrality and etc, and textural, such as Casing, Term position, Term frequency normalization, Term different sentence, Part Of Speech tagging. There have also been attempts to distinguish keywords from candidate phrases and consider them on separate keywords. For evaluating the proposed method, seven datasets were used: Semeval2010, SemEval2017, Inspec, fao30, Thesis100, pak2018, and Wikinews, with results reported as Precision, Recall, and F- measure. Our proposed method performed much better in terms of evaluation metrics in all reviewed datasets compared with available methods in literature. An approximate 16.9% increase was witnessed in F-score metric and this was much more for the Inspec in English datasets and WikiNews in forgone languages. 3 authors · Apr 10, 2021
- Vietnamese AI Generated Text Detection In recent years, Large Language Models (LLMs) have become integrated into our daily lives, serving as invaluable assistants in completing tasks. Widely embraced by users, the abuse of LLMs is inevitable, particularly in using them to generate text content for various purposes, leading to difficulties in distinguishing between text generated by LLMs and that written by humans. In this study, we present a dataset named ViDetect, comprising 6.800 samples of Vietnamese essay, with 3.400 samples authored by humans and the remainder generated by LLMs, serving the purpose of detecting text generated by AI. We conducted evaluations using state-of-the-art methods, including ViT5, BartPho, PhoBERT, mDeberta V3, and mBERT. These results contribute not only to the growing body of research on detecting text generated by AI but also demonstrate the adaptability and effectiveness of different methods in the Vietnamese language context. This research lays the foundation for future advancements in AI-generated text detection and provides valuable insights for researchers in the field of natural language processing. 5 authors · May 6, 2024
- The ARIEL-CMU Systems for LoReHLT18 This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech). 30 authors · Feb 24, 2019
1 Symlink: A New Dataset for Scientific Symbol-Description Linking Mathematical symbols and descriptions appear in various forms across document section boundaries without explicit markup. In this paper, we present a new large-scale dataset that emphasizes extracting symbols and descriptions in scientific documents. Symlink annotates scientific papers of 5 different domains (i.e., computer science, biology, physics, mathematics, and economics). Our experiments on Symlink demonstrate the challenges of the symbol-description linking task for existing models and call for further research effort in this area. We will publicly release Symlink to facilitate future research. 4 authors · Apr 26, 2022
- A Massive Scale Semantic Similarity Dataset of Historical English A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time. 2 authors · Jun 30, 2023
- Humor@IITK at SemEval-2021 Task 7: Large Language Models for Quantifying Humor and Offensiveness Humor and Offense are highly subjective due to multiple word senses, cultural knowledge, and pragmatic competence. Hence, accurately detecting humorous and offensive texts has several compelling use cases in Recommendation Systems and Personalized Content Moderation. However, due to the lack of an extensive labeled dataset, most prior works in this domain haven't explored large neural models for subjective humor understanding. This paper explores whether large neural models and their ensembles can capture the intricacies associated with humor/offense detection and rating. Our experiments on the SemEval-2021 Task 7: HaHackathon show that we can develop reasonable humor and offense detection systems with such models. Our models are ranked third in subtask 1b and consistently ranked around the top 33% of the leaderboard for the remaining subtasks. 5 authors · Apr 2, 2021
- Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy Large language models (LLMs) such as ChatGPT have exhibited remarkable performance in generating human-like texts. However, machine-generated texts (MGTs) may carry critical risks, such as plagiarism issues, misleading information, or hallucination issues. Therefore, it is very urgent and important to detect MGTs in many situations. Unfortunately, it is challenging to distinguish MGTs and human-written texts because the distributional discrepancy between them is often very subtle due to the remarkable performance of LLMs. In this paper, we seek to exploit maximum mean discrepancy (MMD) to address this issue in the sense that MMD can well identify distributional discrepancies. However, directly training a detector with MMD using diverse MGTs will incur a significantly increased variance of MMD since MGTs may contain multiple text populations due to various LLMs. This will severely impair MMD's ability to measure the difference between two samples. To tackle this, we propose a novel multi-population aware optimization method for MMD called MMD-MP, which can avoid variance increases and thus improve the stability to measure the distributional discrepancy. Relying on MMD-MP, we develop two methods for paragraph-based and sentence-based detection, respectively. Extensive experiments on various LLMs, \eg, GPT2 and ChatGPT, show superior detection performance of our MMD-MP. The source code is available at https://github.com/ZSHsh98/MMD-MP. 6 authors · Feb 25, 2024
- Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks. 6 authors · May 18, 2023
- All You Need Is Boundary: Toward Arbitrary-Shaped Text Spotting Recently, end-to-end text spotting that aims to detect and recognize text from cluttered images simultaneously has received particularly growing interest in computer vision. Different from the existing approaches that formulate text detection as bounding box extraction or instance segmentation, we localize a set of points on the boundary of each text instance. With the representation of such boundary points, we establish a simple yet effective scheme for end-to-end text spotting, which can read the text of arbitrary shapes. Experiments on three challenging datasets, including ICDAR2015, TotalText and COCO-Text demonstrate that the proposed method consistently surpasses the state-of-the-art in both scene text detection and end-to-end text recognition tasks. 9 authors · Nov 21, 2019
- Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities. 4 authors · Dec 3, 2021
- Data-to-text Generation with Variational Sequential Planning We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, i.e., documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks (RotoWire and MLB) show that our model outperforms strong baselines and is sample efficient in the face of limited training data (e.g., a few hundred instances). 3 authors · Feb 28, 2022
- Paraphrase Detection: Human vs. Machine Content The growing prominence of large language models, such as GPT-4 and ChatGPT, has led to increased concerns over academic integrity due to the potential for machine-generated content and paraphrasing. Although studies have explored the detection of human- and machine-paraphrased content, the comparison between these types of content remains underexplored. In this paper, we conduct a comprehensive analysis of various datasets commonly employed for paraphrase detection tasks and evaluate an array of detection methods. Our findings highlight the strengths and limitations of different detection methods in terms of performance on individual datasets, revealing a lack of suitable machine-generated datasets that can be aligned with human expectations. Our main finding is that human-authored paraphrases exceed machine-generated ones in terms of difficulty, diversity, and similarity implying that automatically generated texts are not yet on par with human-level performance. Transformers emerged as the most effective method across datasets with TF-IDF excelling on semantically diverse corpora. Additionally, we identify four datasets as the most diverse and challenging for paraphrase detection. 4 authors · Mar 24, 2023