Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCan Language Models Perform Robust Reasoning in Chain-of-thought Prompting with Noisy Rationales?
This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, base LLM drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods. The source code is publicly available at: https://github.com/tmlr-group/NoisyRationales.
Unsupervised Selective Rationalization with Noise Injection
A major issue with using deep learning models in sensitive applications is that they provide no explanation for their output. To address this problem, unsupervised selective rationalization produces rationales alongside predictions by chaining two jointly-trained components, a rationale generator and a predictor. Although this architecture guarantees that the prediction relies solely on the rationale, it does not ensure that the rationale contains a plausible explanation for the prediction. We introduce a novel training technique that effectively limits generation of implausible rationales by injecting noise between the generator and the predictor. Furthermore, we propose a new benchmark for evaluating unsupervised selective rationalization models using movie reviews from existing datasets. We achieve sizeable improvements in rationale plausibility and task accuracy over the state-of-the-art across a variety of tasks, including our new benchmark, while maintaining or improving model faithfulness.
RATIONALYST: Pre-training Process-Supervision for Improving Reasoning
The reasoning steps generated by LLMs might be incomplete, as they mimic logical leaps common in everyday communication found in their pre-training data: underlying rationales are frequently left implicit (unstated). To address this challenge, we introduce RATIONALYST, a model for process-supervision of reasoning based on pre-training on a vast collection of rationale annotations extracted from unlabeled data. We extract 79k rationales from web-scale unlabelled dataset (the Pile) and a combination of reasoning datasets with minimal human intervention. This web-scale pre-training for reasoning allows RATIONALYST to consistently generalize across diverse reasoning tasks, including mathematical, commonsense, scientific, and logical reasoning. Fine-tuned from LLaMa-3-8B, RATIONALYST improves the accuracy of reasoning by an average of 3.9% on 7 representative reasoning benchmarks. It also demonstrates superior performance compared to significantly larger verifiers like GPT-4 and similarly sized models fine-tuned on matching training sets.
Rationale-Augmented Ensembles in Language Models
Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks. We reconsider rationale-augmented prompting for few-shot in-context learning, where (input -> output) prompts are expanded to (input, rationale -> output) prompts. For rationale-augmented prompting we demonstrate how existing approaches, which rely on manual prompt engineering, are subject to sub-optimal rationales that may harm performance. To mitigate this brittleness, we propose a unified framework of rationale-augmented ensembles, where we identify rationale sampling in the output space as the key component to robustly improve performance. This framework is general and can easily be extended to common natural language processing tasks, even those that do not traditionally leverage intermediate steps, such as question answering, word sense disambiguation, and sentiment analysis. We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches--including standard prompting without rationales and rationale-based chain-of-thought prompting--while simultaneously improving interpretability of model predictions through the associated rationales.
What if you said that differently?: How Explanation Formats Affect Human Feedback Efficacy and User Perception
Eliciting feedback from end users of NLP models can be beneficial for improving models. However, how should we present model responses to users so they are most amenable to be corrected from user feedback? Further, what properties do users value to understand and trust responses? We answer these questions by analyzing the effect of rationales (or explanations) generated by QA models to support their answers. We specifically consider decomposed QA models that first extract an intermediate rationale based on a context and a question and then use solely this rationale to answer the question. A rationale outlines the approach followed by the model to answer the question. Our work considers various formats of these rationales that vary according to well-defined properties of interest. We sample rationales from language models using few-shot prompting for two datasets, and then perform two user studies. First, we present users with incorrect answers and corresponding rationales in various formats and ask them to provide natural language feedback to revise the rationale. We then measure the effectiveness of this feedback in patching these rationales through in-context learning. The second study evaluates how well different rationale formats enable users to understand and trust model answers, when they are correct. We find that rationale formats significantly affect how easy it is (1) for users to give feedback for rationales, and (2) for models to subsequently execute this feedback. In addition, formats with attributions to the context and in-depth reasoning significantly enhance user-reported understanding and trust of model outputs.
PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
Neural language models (LMs) have achieved impressive results on various language-based reasoning tasks by utilizing latent knowledge encoded in their own pretrained parameters. To make this reasoning process more explicit, recent works retrieve a rationalizing LM's internal knowledge by training or prompting it to generate free-text rationales, which can be used to guide task predictions made by either the same LM or a separate reasoning LM. However, rationalizing LMs require expensive rationale annotation and/or computation, without any assurance that their generated rationales improve LM task performance or faithfully reflect LM decision-making. In this paper, we propose PINTO, an LM pipeline that rationalizes via prompt-based learning, and learns to faithfully reason over rationales via counterfactual regularization. First, PINTO maps out a suitable reasoning process for the task input by prompting a frozen rationalizing LM to generate a free-text rationale. Second, PINTO's reasoning LM is fine-tuned to solve the task using the generated rationale as context, while regularized to output less confident predictions when the rationale is perturbed. Across four datasets, we show that PINTO significantly improves the generalization ability of the reasoning LM, yielding higher performance on both in-distribution and out-of-distribution test sets. Also, we find that PINTO's rationales are more faithful to its task predictions than those generated by competitive baselines.
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
STaR: Bootstrapping Reasoning With Reasoning
Generating step-by-step "chain-of-thought" rationales improves language model performance on complex reasoning tasks like mathematics or commonsense question-answering. However, inducing language model rationale generation currently requires either constructing massive rationale datasets or sacrificing accuracy by using only few-shot inference. We propose a technique to iteratively leverage a small number of rationale examples and a large dataset without rationales, to bootstrap the ability to perform successively more complex reasoning. This technique, the "Self-Taught Reasoner" (STaR), relies on a simple loop: generate rationales to answer many questions, prompted with a few rationale examples; if the generated answers are wrong, try again to generate a rationale given the correct answer; fine-tune on all the rationales that ultimately yielded correct answers; repeat. We show that STaR significantly improves performance on multiple datasets compared to a model fine-tuned to directly predict final answers, and performs comparably to fine-tuning a 30times larger state-of-the-art language model on CommensenseQA. Thus, STaR lets a model improve itself by learning from its own generated reasoning.
Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking
When writing and talking, people sometimes pause to think. Although reasoning-focused works have often framed reasoning as a method of answering questions or completing agentic tasks, reasoning is implicit in almost all written text. For example, this applies to the steps not stated between the lines of a proof or to the theory of mind underlying a conversation. In the Self-Taught Reasoner (STaR, Zelikman et al. 2022), useful thinking is learned by inferring rationales from few-shot examples in question-answering and learning from those that lead to a correct answer. This is a highly constrained setting -- ideally, a language model could instead learn to infer unstated rationales in arbitrary text. We present Quiet-STaR, a generalization of STaR in which LMs learn to generate rationales at each token to explain future text, improving their predictions. We address key challenges, including 1) the computational cost of generating continuations, 2) the fact that the LM does not initially know how to generate or use internal thoughts, and 3) the need to predict beyond individual next tokens. To resolve these, we propose a tokenwise parallel sampling algorithm, using learnable tokens indicating a thought's start and end, and an extended teacher-forcing technique. Encouragingly, generated rationales disproportionately help model difficult-to-predict tokens and improve the LM's ability to directly answer difficult questions. In particular, after continued pretraining of an LM on a corpus of internet text with Quiet-STaR, we find zero-shot improvements on GSM8K (5.9%rightarrow10.9%) and CommonsenseQA (36.3%rightarrow47.2%) and observe a perplexity improvement of difficult tokens in natural text. Crucially, these improvements require no fine-tuning on these tasks. Quiet-STaR marks a step towards LMs that can learn to reason in a more general and scalable way.
Rationales for Sequential Predictions
Sequence models are a critical component of modern NLP systems, but their predictions are difficult to explain. We consider model explanations though rationales, subsets of context that can explain individual model predictions. We find sequential rationales by solving a combinatorial optimization: the best rationale is the smallest subset of input tokens that would predict the same output as the full sequence. Enumerating all subsets is intractable, so we propose an efficient greedy algorithm to approximate this objective. The algorithm, which is called greedy rationalization, applies to any model. For this approach to be effective, the model should form compatible conditional distributions when making predictions on incomplete subsets of the context. This condition can be enforced with a short fine-tuning step. We study greedy rationalization on language modeling and machine translation. Compared to existing baselines, greedy rationalization is best at optimizing the combinatorial objective and provides the most faithful rationales. On a new dataset of annotated sequential rationales, greedy rationales are most similar to human rationales.
REFER: An End-to-end Rationale Extraction Framework for Explanation Regularization
Human-annotated textual explanations are becoming increasingly important in Explainable Natural Language Processing. Rationale extraction aims to provide faithful (i.e., reflective of the behavior of the model) and plausible (i.e., convincing to humans) explanations by highlighting the inputs that had the largest impact on the prediction without compromising the performance of the task model. In recent works, the focus of training rationale extractors was primarily on optimizing for plausibility using human highlights, while the task model was trained on jointly optimizing for task predictive accuracy and faithfulness. We propose REFER, a framework that employs a differentiable rationale extractor that allows to back-propagate through the rationale extraction process. We analyze the impact of using human highlights during training by jointly training the task model and the rationale extractor. In our experiments, REFER yields significantly better results in terms of faithfulness, plausibility, and downstream task accuracy on both in-distribution and out-of-distribution data. On both e-SNLI and CoS-E, our best setting produces better results in terms of composite normalized relative gain than the previous baselines by 11% and 3%, respectively.
Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems
Solving algebraic word problems requires executing a series of arithmetic operations---a program---to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.
Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring
Generating rationales that justify scoring decisions has been a promising way to facilitate explainability in automated scoring systems. However, existing methods do not match the accuracy of classifier-based methods. Plus, the generated rationales often contain hallucinated information. To address these issues, we propose a novel framework capable of generating more faithful rationales and, more importantly, matching performance with classifier-based black-box scoring systems. We first mimic the human assessment process by querying Large Language Models (LLMs) to generate a thought tree. We then summarise intermediate assessment decisions from each thought tree path for creating synthetic rationale data and rationale preference data. Finally, we utilise the generated synthetic data to calibrate LLMs through a two-step training process: supervised fine-tuning and preference optimization. Extensive experimental results demonstrate that our framework achieves a 38% assessment performance improvement in the QWK score compared to prior work while producing higher-quality rationales, as recognised by human evaluators and LLMs. Our work sheds light on the effectiveness of performing preference optimization using synthetic preference data obtained from thought tree paths.
Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing
Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through direct preference optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
Invariant Graph Transformer
Rationale discovery is defined as finding a subset of the input data that maximally supports the prediction of downstream tasks. In graph machine learning context, graph rationale is defined to locate the critical subgraph in the given graph topology, which fundamentally determines the prediction results. In contrast to the rationale subgraph, the remaining subgraph is named the environment subgraph. Graph rationalization can enhance the model performance as the mapping between the graph rationale and prediction label is viewed as invariant, by assumption. To ensure the discriminative power of the extracted rationale subgraphs, a key technique named "intervention" is applied. The core idea of intervention is that given any changing environment subgraphs, the semantics from the rationale subgraph is invariant, which guarantees the correct prediction result. However, most, if not all, of the existing rationalization works on graph data develop their intervention strategies on the graph level, which is coarse-grained. In this paper, we propose well-tailored intervention strategies on graph data. Our idea is driven by the development of Transformer models, whose self-attention module provides rich interactions between input nodes. Based on the self-attention module, our proposed invariant graph Transformer (IGT) can achieve fine-grained, more specifically, node-level and virtual node-level intervention. Our comprehensive experiments involve 7 real-world datasets, and the proposed IGT shows significant performance advantages compared to 13 baseline methods.
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions
Automated rationale generation is an approach for real-time explanation generation whereby a computational model learns to translate an autonomous agent's internal state and action data representations into natural language. Training on human explanation data can enable agents to learn to generate human-like explanations for their behavior. In this paper, using the context of an agent that plays Frogger, we describe (a) how to collect a corpus of explanations, (b) how to train a neural rationale generator to produce different styles of rationales, and (c) how people perceive these rationales. We conducted two user studies. The first study establishes the plausibility of each type of generated rationale and situates their user perceptions along the dimensions of confidence, humanlike-ness, adequate justification, and understandability. The second study further explores user preferences between the generated rationales with regard to confidence in the autonomous agent, communicating failure and unexpected behavior. Overall, we find alignment between the intended differences in features of the generated rationales and the perceived differences by users. Moreover, context permitting, participants preferred detailed rationales to form a stable mental model of the agent's behavior.
Self-Training Meets Consistency: Improving LLMs' Reasoning With Consistency-Driven Rationale Evaluation
Self-training approach for large language models (LLMs) improves reasoning abilities by training the models on their self-generated rationales. Previous approaches have labeled rationales that produce correct answers for a given question as appropriate for training. However, a single measure risks misjudging rationale quality, leading the models to learn flawed reasoning patterns. To address this issue, we propose CREST (Consistency-driven Rationale Evaluation for Self-Training), a self-training framework that further evaluates each rationale through follow-up questions and leverages this evaluation to guide its training. Specifically, we introduce two methods: (1) filtering out rationales that frequently result in incorrect answers on follow-up questions and (2) preference learning based on mixed preferences from rationale evaluation results of both original and follow-up questions. Experiments on three question-answering datasets using open LLMs show that CREST not only improves the logical robustness and correctness of rationales but also improves reasoning abilities compared to previous self-training approaches.
Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions. Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework, separating rationale generation from answer inference. However, these approaches often fall short due to the inadequate quality of the generated rationales. In this work, we delve into the importance of rationales in model reasoning. We observe that when rationales are completely accurate, the model's accuracy significantly improves, highlighting the need for high-quality rationale generation. Motivated by this, we propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process. This approach not only enhances the quality of generated rationales but also leads to more accurate and robust answers. Through extensive experiments, we demonstrate that our approach significantly improves model performance across various benchmarks. Remarkably, we show that even smaller base models, when equipped with our proposed approach, can achieve results comparable to those of larger models, illustrating the potential of our approach in harnessing the power of rationales for improved multimodal reasoning. The code is available at https://github.com/chengtan9907/mc-cot.
Data-Centric Human Preference Optimization with Rationales
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences, traditionally represented through comparisons between pairs or sets of responses within a given context. While many studies have enhanced algorithmic techniques to optimize learning from such data, this work shifts focus to improving preference learning through a data-centric approach. Specifically, we propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices. We develop a simple and principled framework to augment current preference learning methods with rationale information. Our comprehensive analysis highlights how rationales enhance learning efficiency. Extensive experiments reveal that rationale-enriched preference learning offers multiple advantages: it improves data efficiency, accelerates convergence to higher-performing models, and reduces verbosity bias and hallucination. Furthermore, this framework is versatile enough to integrate with various preference optimization algorithms. Overall, our findings highlight the potential of re-imagining data design for preference learning, demonstrating that even freely available machine-generated rationales can significantly boost performance across multiple dimensions. The code repository is available at https: //github.com/reds-lab/preference-learning-with-rationales
Improving Language Model Reasoning with Self-motivated Learning
Large-scale high-quality training data is important for improving the performance of models. After trained with data that has rationales (reasoning steps), models gain reasoning capability. However, the dataset with high-quality rationales is relatively scarce due to the high annotation cost. To address this issue, we propose Self-motivated Learning framework. The framework motivates the model itself to automatically generate rationales on existing datasets. Based on the inherent rank from correctness across multiple rationales, the model learns to generate better rationales, leading to higher reasoning capability. Specifically, we train a reward model with the rank to evaluate the quality of rationales, and improve the performance of reasoning through reinforcement learning. Experiment results of Llama2 7B on multiple reasoning datasets show that our method significantly improves the reasoning ability of models, even outperforming text-davinci-002 in some datasets.
Analysing the Noise Model Error for Realistic Noisy Label Data
Distant and weak supervision allow to obtain large amounts of labeled training data quickly and cheaply, but these automatic annotations tend to contain a high amount of errors. A popular technique to overcome the negative effects of these noisy labels is noise modelling where the underlying noise process is modelled. In this work, we study the quality of these estimated noise models from the theoretical side by deriving the expected error of the noise model. Apart from evaluating the theoretical results on commonly used synthetic noise, we also publish NoisyNER, a new noisy label dataset from the NLP domain that was obtained through a realistic distant supervision technique. It provides seven sets of labels with differing noise patterns to evaluate different noise levels on the same instances. Parallel, clean labels are available making it possible to study scenarios where a small amount of gold-standard data can be leveraged. Our theoretical results and the corresponding experiments give insights into the factors that influence the noise model estimation like the noise distribution and the sampling technique.
Towards Faithful Explanations: Boosting Rationalization with Shortcuts Discovery
The remarkable success in neural networks provokes the selective rationalization. It explains the prediction results by identifying a small subset of the inputs sufficient to support them. Since existing methods still suffer from adopting the shortcuts in data to compose rationales and limited large-scale annotated rationales by human, in this paper, we propose a Shortcuts-fused Selective Rationalization (SSR) method, which boosts the rationalization by discovering and exploiting potential shortcuts. Specifically, SSR first designs a shortcuts discovery approach to detect several potential shortcuts. Then, by introducing the identified shortcuts, we propose two strategies to mitigate the problem of utilizing shortcuts to compose rationales. Finally, we develop two data augmentations methods to close the gap in the number of annotated rationales. Extensive experimental results on real-world datasets clearly validate the effectiveness of our proposed method.
Generating Pragmatic Examples to Train Neural Program Synthesizers
Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training.
R^3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context
With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R^3 prompting, for CoT reasoning under noisy context. Specifically, R^3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R^3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R^3 prompting method in solving reasoning tasks in LLMs under noisy context.
Post Hoc Explanations of Language Models Can Improve Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, leads to critical insights for refining in-context learning.
WikiWhy: Answering and Explaining Cause-and-Effect Questions
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
Learning Iterative Reasoning through Energy Diffusion
We introduce iterative reasoning through energy diffusion (IRED), a novel framework for learning to reason for a variety of tasks by formulating reasoning and decision-making problems with energy-based optimization. IRED learns energy functions to represent the constraints between input conditions and desired outputs. After training, IRED adapts the number of optimization steps during inference based on problem difficulty, enabling it to solve problems outside its training distribution -- such as more complex Sudoku puzzles, matrix completion with large value magnitudes, and pathfinding in larger graphs. Key to our method's success is two novel techniques: learning a sequence of annealed energy landscapes for easier inference and a combination of score function and energy landscape supervision for faster and more stable training. Our experiments show that IRED outperforms existing methods in continuous-space reasoning, discrete-space reasoning, and planning tasks, particularly in more challenging scenarios. Code and visualizations at https://energy-based-model.github.io/ired/
Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K, this method achieved a 5% improvement in accuracy over standard supervised fine-tuning with a few codes modified and no additional labeling effort. Furthermore, it is complementary to existing methods. When integrated with related data augmentation methods, it leads to an average improvement of 3% improvement in GSM8K accuracy and 1% improvement in MATH accuracy across five datasets of various quality and size, as well as two base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of premises in questions and prior steps. Our code is available at Github.
Dyve: Thinking Fast and Slow for Dynamic Process Verification
We present Dyve, a dynamic process verifier that enhances reasoning error detection in large language models by integrating fast and slow thinking, inspired by Kahneman's Systems Theory. Dyve adaptively applies immediate token-level confirmation System 1 for straightforward steps and comprehensive analysis System 2 for complex ones. Leveraging a novel step-wise consensus-filtered process supervision technique, combining Monte Carlo estimation with LLM based evaluation, Dyve curates high-quality supervision signals from noisy data. Experimental results on ProcessBench and the MATH dataset confirm that Dyve significantly outperforms existing process-based verifiers and boosts performance in Best-of-N settings.
Self-rationalization improves LLM as a fine-grained judge
LLM-as-a-judge models have been used for evaluating both human and AI generated content, specifically by providing scores and rationales. Rationales, in addition to increasing transparency, help models learn to calibrate its judgments. Enhancing a model's rationale can therefore improve its calibration abilities and ultimately the ability to score content. We introduce Self-Rationalization, an iterative process of improving the rationales for the judge models, which consequently improves the score for fine-grained customizable scoring criteria (i.e., likert-scale scoring with arbitrary evaluation criteria). Self-rationalization works by having the model generate multiple judgments with rationales for the same input, curating a preference pair dataset from its own judgements, and iteratively fine-tuning the judge via DPO. Intuitively, this approach allows the judge model to self-improve by learning from its own rationales, leading to better alignment and evaluation accuracy. After just two iterations -- while only relying on examples in the training set -- human evaluation shows that our judge model learns to produce higher quality rationales, with a win rate of 62% on average compared to models just trained via SFT on rationale . This judge model also achieves high scoring accuracy on BigGen Bench and Reward Bench, outperforming even bigger sized models trained using SFT with rationale, self-consistency or best-of-N sampling by 3% to 9%.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
Learning to Reason via Self-Iterative Process Feedback for Small Language Models
Small language models (SLMs) are more efficient, cost-effective, and customizable than large language models (LLMs), though they often underperform in specific areas like reasoning. Past methods for enhancing SLMs' reasoning, such as supervised fine-tuning and distillation, often depend on costly external signals, resulting in SLMs being overly confident with limited supervision signals, thus limiting their abilities. Therefore, this study enables SLMs to learn to reason from self-iterative feedback. By combining odds ratio preference optimization (ORPO), we fine-tune and align SLMs using positive and negative signals generated by themselves. Additionally, we introduce process supervision for rewards in preference alignment by sampling-based inference simulation and process reward models. Compared to Supervised Fine-Tuning (SFT), our method improves the performance of Gemma-2B by 12.43 (Acc) on GSM8K and 3.95 (Pass@1) on MBPP. Furthermore, the proposed method also demonstrated superior out-of-domain generalization capabilities on MMLU_Math and HumanEval.
Chain-of-Thought Matters: Improving Long-Context Language Models with Reasoning Path Supervision
Recent advances in Large Language Models (LLMs) have highlighted the challenge of handling long-context tasks, where models need to reason over extensive input contexts to aggregate target information. While Chain-of-Thought (CoT) prompting has shown promise for multi-step reasoning, its effectiveness for long-context scenarios remains underexplored. Through systematic investigation across diverse tasks, we demonstrate that CoT's benefits generalize across most long-context scenarios and amplify with increasing context length. Motivated by this critical observation, we propose LongRePS, a process-supervised framework that teaches models to generate high-quality reasoning paths for enhanced long-context performance. Our framework incorporates a self-sampling mechanism to bootstrap reasoning paths and a novel quality assessment protocol specifically designed for long-context scenarios. Experimental results on various long-context benchmarks demonstrate the effectiveness of our approach, achieving significant improvements over outcome supervision baselines on both in-domain tasks (+13.6/+3.8 points for LLaMA/Qwen on MuSiQue) and cross-domain generalization (+9.3/+8.1 points on average across diverse QA tasks). Our code, data and trained models are made public to facilitate future research.
Deconfounding Legal Judgment Prediction for European Court of Human Rights Cases Towards Better Alignment with Experts
This work demonstrates that Legal Judgement Prediction systems without expert-informed adjustments can be vulnerable to shallow, distracting surface signals that arise from corpus construction, case distribution, and confounding factors. To mitigate this, we use domain expertise to strategically identify statistically predictive but legally irrelevant information. We adopt adversarial training to prevent the system from relying on it. We evaluate our deconfounded models by employing interpretability techniques and comparing to expert annotations. Quantitative experiments and qualitative analysis show that our deconfounded model consistently aligns better with expert rationales than baselines trained for prediction only. We further contribute a set of reference expert annotations to the validation and testing partitions of an existing benchmark dataset of European Court of Human Rights cases.
Large Language Models Are Reasoning Teachers
Recent works have shown that chain-of-thought (CoT) prompting can elicit language models to solve complex reasoning tasks, step-by-step. However, prompt-based CoT methods are dependent on very large models such as GPT-3 175B which are prohibitive to deploy at scale. In this paper, we use these large models as reasoning teachers to enable complex reasoning in smaller models and reduce model size requirements by several orders of magnitude. We propose Fine-tune-CoT, a method that generates reasoning samples from very large teacher models to fine-tune smaller models. We evaluate our method on a wide range of public models and complex tasks. We find that Fine-tune-CoT enables substantial reasoning capability in small models, far outperforming prompt-based baselines and even the teacher model in many tasks. Additionally, we extend our method by leveraging the teacher model's ability to generate multiple distinct rationales for each original sample. Enriching the fine-tuning data with such diverse reasoning results in a substantial performance boost across datasets, even for very small models. We conduct ablations and sample studies to understand the emergence of reasoning capabilities of student models. Our code implementation and data are available at https://github.com/itsnamgyu/reasoning-teacher.
Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension
Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models
The rapid development of large language and vision models (LLVMs) has been driven by advances in visual instruction tuning. Recently, open-source LLVMs have curated high-quality visual instruction tuning datasets and utilized additional vision encoders or multiple computer vision models in order to narrow the performance gap with powerful closed-source LLVMs. These advancements are attributed to multifaceted information required for diverse capabilities, including fundamental image understanding, real-world knowledge about common-sense and non-object concepts (e.g., charts, diagrams, symbols, signs, and math problems), and step-by-step procedures for solving complex questions. Drawing from the multifaceted information, we present a new efficient LLVM, Mamba-based traversal of rationales (Meteor), which leverages multifaceted rationale to enhance understanding and answering capabilities. To embed lengthy rationales containing abundant information, we employ the Mamba architecture, capable of processing sequential data with linear time complexity. We introduce a new concept of traversal of rationale that facilitates efficient embedding of rationale. Subsequently, the backbone multimodal language model (MLM) is trained to generate answers with the aid of rationale. Through these steps, Meteor achieves significant improvements in vision language performances across multiple evaluation benchmarks requiring diverse capabilities, without scaling up the model size or employing additional vision encoders and computer vision models.
Enhance Reasoning by Learning from Mistakes: Peer-Review Knowledge Distillation from Multiple Large Language Models
Large language models (LLMs) have exhibited complex reasoning abilities by generating question rationales and demonstrated exceptional performance in natural language processing (NLP) tasks. However, these reasoning capabilities generally emerge in models with tens of billions of parameters, creating significant computational challenges for real-world deployment. Recent research has concentrated on improving open-source smaller models through knowledge distillation (KD) from commercial LLMs. Nevertheless, most of these studies rely solely on the responses from one single LLM as the gold rationale for training. In this paper, we introduce a novel Mistake-Aware Peer-Review Distillation (MAPD) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.
Self-Explore to Avoid the Pit: Improving the Reasoning Capabilities of Language Models with Fine-grained Rewards
Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at https://github.com/hbin0701/Self-Explore.
Training Language Models to Reason Efficiently
Scaling model size and training data has led to great advances in the performance of Large Language Models (LLMs). However, the diminishing returns of this approach necessitate alternative methods to improve model capabilities, particularly in tasks requiring advanced reasoning. Large reasoning models, which leverage long chain-of-thoughts, bring unprecedented breakthroughs in problem-solving capabilities but at a substantial deployment cost associated to longer generations. Reducing inference costs is crucial for the economic feasibility, user experience, and environmental sustainability of these models. In this work, we propose to train large reasoning models to reason efficiently. More precisely, we use reinforcement learning (RL) to train reasoning models to dynamically allocate inference-time compute based on task complexity. Our method incentivizes models to minimize unnecessary computational overhead while maintaining accuracy, thereby achieving substantial efficiency gains. It enables the derivation of a family of reasoning models with varying efficiency levels, controlled via a single hyperparameter. Experiments on two open-weight large reasoning models demonstrate significant reductions in inference cost while preserving most of the accuracy.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
Boosting Language Models Reasoning with Chain-of-Knowledge Prompting
Recently, Chain-of-Thought (CoT) prompting has delivered success on complex reasoning tasks, which aims at designing a simple prompt like ``Let's think step by step'' or multiple in-context exemplars with well-designed rationales to elicit Large Language Models (LLMs) to generate intermediate reasoning steps. However, the generated rationales often come with mistakes, making unfactual and unfaithful reasoning chains. To mitigate this brittleness, we propose a novel Chain-of-Knowledge (CoK) prompting, where we aim at eliciting LLMs to generate explicit pieces of knowledge evidence in the form of structure triple. This is inspired by our human behaviors, i.e., we can draw a mind map or knowledge map as the reasoning evidence in the brain before answering a complex question. Benefiting from CoK, we additionally introduce a F^2-Verification method to estimate the reliability of the reasoning chains in terms of factuality and faithfulness. For the unreliable response, the wrong evidence can be indicated to prompt the LLM to rethink. Extensive experiments demonstrate that our method can further improve the performance of commonsense, factual, symbolic, and arithmetic reasoning tasks.
QCRD: Quality-guided Contrastive Rationale Distillation for Large Language Models
The deployment of large language models (LLMs) faces considerable challenges concerning resource constraints and inference efficiency. Recent research has increasingly focused on smaller, task-specific models enhanced by distilling knowledge from LLMs. However, prior studies have often overlooked the diversity and quality of knowledge, especially the untapped potential of negative knowledge. Constructing effective negative knowledge remains severely understudied. In this paper, we introduce a novel framework called quality-guided contrastive rationale distillation aimed at enhancing reasoning capabilities through contrastive knowledge learning. For positive knowledge, we enrich its diversity through temperature sampling and employ self-consistency for further denoising and refinement. For negative knowledge, we propose an innovative self-adversarial approach that generates low-quality rationales by sampling previous iterations of smaller language models, embracing the idea that one can learn from one's own weaknesses. A contrastive loss is developed to distill both positive and negative knowledge into smaller language models, where an online-updating discriminator is integrated to assess qualities of rationales and assign them appropriate weights, optimizing the training process. Through extensive experiments across multiple reasoning tasks, we demonstrate that our method consistently outperforms existing distillation techniques, yielding higher-quality rationales.
Making Reasoning Matter: Measuring and Improving Faithfulness of Chain-of-Thought Reasoning
Large language models (LLMs) have been shown to perform better when asked to reason step-by-step before answering a question. However, it is unclear to what degree the model's final answer is faithful to the stated reasoning steps. In this paper, we perform a causal mediation analysis on twelve LLMs to examine how intermediate reasoning steps generated by the LLM influence the final outcome and find that LLMs do not reliably use their intermediate reasoning steps when generating an answer. To address this issue, we introduce FRODO, a framework to tailor small-sized LMs to generate correct reasoning steps and robustly reason over these steps. FRODO consists of an inference module that learns to generate correct reasoning steps using an implicit causal reward function and a reasoning module that learns to faithfully reason over these intermediate inferences using a counterfactual and causal preference objective. Our experiments show that FRODO significantly outperforms four competitive baselines. Furthermore, FRODO improves the robustness and generalization ability of the reasoning LM, yielding higher performance on out-of-distribution test sets. Finally, we find that FRODO's rationales are more faithful to its final answer predictions than standard supervised fine-tuning.
Improve Vision Language Model Chain-of-thought Reasoning
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes lack robust CoT reasoning data, relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses. To address this, we propose a two-fold approach. First, we distill rationales from GPT-4o model to enrich the training data and fine-tune VLMs, boosting their CoT performance. Second, we apply reinforcement learning to further calibrate reasoning quality. Specifically, we construct positive (correct) and negative (incorrect) pairs of model-generated reasoning chains, by comparing their predictions with annotated short answers. Using this pairwise data, we apply the Direct Preference Optimization algorithm to refine the model's reasoning abilities. Our experiments demonstrate significant improvements in CoT reasoning on benchmark datasets and better generalization to direct answer prediction as well. This work emphasizes the importance of incorporating detailed rationales in training and leveraging reinforcement learning to strengthen the reasoning capabilities of VLMs.
Vision-Language Models Can Self-Improve Reasoning via Reflection
Chain-of-thought (CoT) has proven to improve the reasoning capability of large language models (LLMs). However, due to the complexity of multimodal scenarios and the difficulty in collecting high-quality CoT data, CoT reasoning in multimodal LLMs has been largely overlooked. To this end, we propose a simple yet effective self-training framework, R3V, which iteratively enhances the model's Vision-language Reasoning by Reflecting on CoT Rationales. Our framework consists of two interleaved parts: (1) iteratively bootstrapping positive and negative solutions for reasoning datasets, and (2) reflection on rationale for learning from mistakes. Specifically, we introduce the self-refine and self-select losses, enabling the model to refine flawed rationale and derive the correct answer by comparing rationale candidates. Experiments on a wide range of vision-language tasks show that R3V consistently improves multimodal LLM reasoning, achieving a relative improvement of 23 to 60 percent over GPT-distilled baselines. Additionally, our approach supports self-reflection on generated solutions, further boosting performance through test-time computation.
Training Chain-of-Thought via Latent-Variable Inference
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a ``chain-of-thought'' (CoT) prompt. One can also improve LLMs' performance on a specific task by supervised fine-tuning, i.e., by using gradient ascent on some tunable parameters to maximize the average log-likelihood of correct answers from a labeled training set. Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers; these rationales are expensive to produce by hand. Instead, we propose a fine-tuning strategy that tries to maximize the marginal log-likelihood of generating a correct answer using CoT prompting, approximately averaging over all possible rationales. The core challenge is sampling from the posterior over rationales conditioned on the correct answer; we address it using a simple Markov-chain Monte Carlo (MCMC) expectation-maximization (EM) algorithm inspired by the self-taught reasoner (STaR), memoized wake-sleep, Markovian score climbing, and persistent contrastive divergence. This algorithm also admits a novel control-variate technique that drives the variance of our gradient estimates to zero as the model improves. Applying our technique to GSM8K and the tasks in BIG-Bench Hard, we find that this MCMC-EM fine-tuning technique typically improves the model's accuracy on held-out examples more than STaR or prompt-tuning with or without CoT.
Self-Training Elicits Concise Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
PSPO*: An Effective Process-supervised Policy Optimization for Reasoning Alignment
Process supervision enhances the performance of large language models in reasoning tasks by providing feedback at each step of chain-of-thought reasoning. However, due to the lack of effective process supervision methods, even advanced large language models are prone to logical errors and redundant reasoning. We claim that the effectiveness of process supervision significantly depends on both the accuracy and the length of reasoning chains. Moreover, we identify that these factors exhibit a nonlinear relationship with the overall reward score of the reasoning process. Inspired by these insights, we propose a novel process supervision paradigm, PSPO*, which systematically outlines the workflow from reward model training to policy optimization, and highlights the importance of nonlinear rewards in process supervision. Based on PSPO*, we develop the PSPO-WRS, which considers the number of reasoning steps in determining reward scores and utilizes an adjusted Weibull distribution for nonlinear reward shaping. Experimental results on six mathematical reasoning datasets demonstrate that PSPO-WRS consistently outperforms current mainstream models.
RAFT: Rationale adaptor for few-shot abusive language detection
Abusive language is a concerning problem in online social media. Past research on detecting abusive language covers different platforms, languages, demographies, etc. However, models trained using these datasets do not perform well in cross-domain evaluation settings. To overcome this, a common strategy is to use a few samples from the target domain to train models to get better performance in that domain (cross-domain few-shot training). However, this might cause the models to overfit the artefacts of those samples. A compelling solution could be to guide the models toward rationales, i.e., spans of text that justify the text's label. This method has been found to improve model performance in the in-domain setting across various NLP tasks. In this paper, we propose RAFT (Rationale Adaptor for Few-shoT classification) for abusive language detection. We first build a multitask learning setup to jointly learn rationales, targets, and labels, and find a significant improvement of 6% macro F1 on the rationale detection task over training solely rationale classifiers. We introduce two rationale-integrated BERT-based architectures (the RAFT models) and evaluate our systems over five different abusive language datasets, finding that in the few-shot classification setting, RAFT-based models outperform baseline models by about 7% in macro F1 scores and perform competitively to models finetuned on other source domains. Furthermore, RAFT-based models outperform LIME/SHAP-based approaches in terms of plausibility and are close in performance in terms of faithfulness.
Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in large reasoning models. To analyze reasoning dynamics, we use synthetic logic puzzles as training data due to their controllable complexity and straightforward answer verification. We make some key technical contributions that lead to effective and stable RL training: a system prompt that emphasizes the thinking and answering process, a stringent format reward function that penalizes outputs for taking shortcuts, and a straightforward training recipe that achieves stable convergence. Our 7B model develops advanced reasoning skills-such as reflection, verification, and summarization-that are absent from the logic corpus. Remarkably, after training on just 5K logic problems, it demonstrates generalization abilities to the challenging math benchmarks AIME and AMC.
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
We introduce AI rationalization, an approach for generating explanations of autonomous system behavior as if a human had performed the behavior. We describe a rationalization technique that uses neural machine translation to translate internal state-action representations of an autonomous agent into natural language. We evaluate our technique in the Frogger game environment, training an autonomous game playing agent to rationalize its action choices using natural language. A natural language training corpus is collected from human players thinking out loud as they play the game. We motivate the use of rationalization as an approach to explanation generation and show the results of two experiments evaluating the effectiveness of rationalization. Results of these evaluations show that neural machine translation is able to accurately generate rationalizations that describe agent behavior, and that rationalizations are more satisfying to humans than other alternative methods of explanation.
Dialogue Chain-of-Thought Distillation for Commonsense-aware Conversational Agents
Human-like chatbots necessitate the use of commonsense reasoning in order to effectively comprehend and respond to implicit information present within conversations. Achieving such coherence and informativeness in responses, however, is a non-trivial task. Even for large language models (LLMs), the task of identifying and aggregating key evidence within a single hop presents a substantial challenge. This complexity arises because such evidence is scattered across multiple turns in a conversation, thus necessitating integration over multiple hops. Hence, our focus is to facilitate such multi-hop reasoning over a dialogue context, namely dialogue chain-of-thought (CoT) reasoning. To this end, we propose a knowledge distillation framework that leverages LLMs as unreliable teachers and selectively distills consistent and helpful rationales via alignment filters. We further present DOCTOR, a DialOgue Chain-of-ThOught Reasoner that provides reliable CoT rationales for response generation. We conduct extensive experiments to show that enhancing dialogue agents with high-quality rationales from DOCTOR significantly improves the quality of their responses.
Self-supervised Analogical Learning using Language Models
Large language models have been shown to suffer from reasoning inconsistency issues. That is, they fail more in situations unfamiliar to the training data, even though exact or very similar reasoning paths exist in more common cases that they can successfully solve. Such observations motivate us to propose methods that encourage models to understand the high-level and abstract reasoning processes during training instead of only the final answer. This way, models can transfer the exact solution to similar cases, regardless of their relevance to the pre-training data distribution. In this work, we propose SAL, a self-supervised analogical learning framework. SAL mimics the human analogy process and trains models to explicitly transfer high-quality symbolic solutions from cases that they know how to solve to other rare cases in which they tend to fail more. We show that the resulting models after SAL learning outperform base language models on a wide range of reasoning benchmarks, such as StrategyQA, GSM8K, and HotpotQA, by 2% to 20%. At the same time, we show that our model is more generalizable and controllable through analytical studies.
TinyLLM: Learning a Small Student from Multiple Large Language Models
Transferring the reasoning capability from stronger large language models (LLMs) to smaller ones has been quite appealing, as smaller LLMs are more flexible to deploy with less expense. Among the existing solutions, knowledge distillation stands out due to its outstanding efficiency and generalization. However, existing methods suffer from several drawbacks, including limited knowledge diversity and the lack of rich contextual information. To solve the problems and facilitate the learning of compact language models, we propose TinyLLM, a novel knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs. In particular, we encourage the student LLM to not only generate the correct answers but also understand the rationales behind these answers. Given that different LLMs possess diverse reasoning skills, we guide the student model to assimilate knowledge from various teacher LLMs. We further introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios. Extensive experiments on six datasets across two reasoning tasks demonstrate the superiority of our method. Results show that TinyLLM can outperform large teacher LLMs significantly, despite having a considerably smaller model size.
Rationale-Enhanced Language Models are Better Continual Relation Learners
Continual relation extraction (CRE) aims to solve the problem of catastrophic forgetting when learning a sequence of newly emerging relations. Recent CRE studies have found that catastrophic forgetting arises from the model's lack of robustness against future analogous relations. To address the issue, we introduce rationale, i.e., the explanations of relation classification results generated by large language models (LLM), into CRE task. Specifically, we design the multi-task rationale tuning strategy to help the model learn current relations robustly. We also conduct contrastive rationale replay to further distinguish analogous relations. Experimental results on two standard benchmarks demonstrate that our method outperforms the state-of-the-art CRE models.
Decomposition Enhances Reasoning via Self-Evaluation Guided Decoding
We endow Large Language Models (LLMs) with fine-grained self-evaluation to refine multi-step reasoning inference. We propose an effective prompting approach that integrates self-evaluation guidance through stochastic beam search. Our approach explores the reasoning search space using a well-calibrated automatic criterion. This enables an efficient search to produce higher-quality final predictions. With the self-evaluation guided stochastic beam search, we also balance the quality-diversity trade-off in the generation of reasoning chains. This allows our approach to adapt well with majority voting and surpass the corresponding Codex-backboned baselines by 6.34%, 9.56%, and 5.46% on the GSM8K, AQuA, and StrategyQA benchmarks, respectively, in few-shot accuracy. Analysis of our decompositional reasoning finds it pinpoints logic failures and leads to higher consistency and robustness. Our code is publicly available at https://github.com/YuxiXie/SelfEval-Guided-Decoding.
Properties and Challenges of LLM-Generated Explanations
The self-rationalising capabilities of large language models (LLMs) have been explored in restricted settings, using task/specific data sets. However, current LLMs do not (only) rely on specifically annotated data; nonetheless, they frequently explain their outputs. The properties of the generated explanations are influenced by the pre-training corpus and by the target data used for instruction fine-tuning. As the pre-training corpus includes a large amount of human-written explanations "in the wild", we hypothesise that LLMs adopt common properties of human explanations. By analysing the outputs for a multi-domain instruction fine-tuning data set, we find that generated explanations show selectivity and contain illustrative elements, but less frequently are subjective or misleading. We discuss reasons and consequences of the properties' presence or absence. In particular, we outline positive and negative implications depending on the goals and user groups of the self-rationalising system.
Divide and Conquer for Large Language Models Reasoning
Large language models (LLMs) have shown impressive performance in various reasoning benchmarks with the emergence of Chain-of-Thought (CoT) and its derivative methods, particularly in tasks involving multi-choice questions (MCQs). However, current works all process data uniformly without considering the problem-solving difficulty, which means an excessive focus on simple questions while insufficient to intricate ones. To address this challenge, we inspired by humans using heuristic strategies to categorize tasks and handle them individually, propose to apply the Divide and Conquer to LLMs reasoning. First, we divide questions into different subsets based on the statistical confidence score (CS), then fix nearly resolved sets and conquer demanding nuanced process ones with elaborately designed methods, including Prior Knowledge based Reasoning (PKR) and Filter Choices based Reasoning (FCR), as well as their integration variants. Our experiments demonstrate that this proposed strategy significantly boosts the models' reasoning abilities across nine datasets involving arithmetic, commonsense, and logic tasks. For instance, compared to baseline, we make a striking improvement on low confidence subsets of 8.72\% for AQuA, 15.07\% for ARC Challenge and 7.71\% for RiddleSense. In addition, through extensive analysis on length of rationale and number of options, we verify that longer reasoning paths in PKR could prevent models from referring infer-harmful shortcuts, and also find that removing irrelevant choices in FCR would substantially avoid models' confusion. The code is at https://github.com/AiMijie/Divide-and-Conquer
Tailoring Self-Rationalizers with Multi-Reward Distillation
Large language models (LMs) are capable of generating free-text rationales to aid question answering. However, prior work 1) suggests that useful self-rationalization is emergent only at significant scales (e.g., 175B parameter GPT-3); and 2) focuses largely on downstream performance, ignoring the semantics of the rationales themselves, e.g., are they faithful, true, and helpful for humans? In this work, we enable small-scale LMs (approx. 200x smaller than GPT-3) to generate rationales that not only improve downstream task performance, but are also more plausible, consistent, and diverse, assessed both by automatic and human evaluation. Our method, MaRio (Multi-rewArd RatIOnalization), is a multi-reward conditioned self-rationalization algorithm that optimizes multiple distinct properties like plausibility, diversity and consistency. Results on five difficult question-answering datasets StrategyQA, QuaRel, OpenBookQA, NumerSense and QASC show that not only does MaRio improve task accuracy, but it also improves the self-rationalization quality of small LMs across the aforementioned axes better than a supervised fine-tuning (SFT) baseline. Extensive human evaluations confirm that MaRio rationales are preferred vs. SFT rationales, as well as qualitative improvements in plausibility and consistency.
ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning
This paper presents ReasoningRec, a reasoning-based recommendation framework that leverages Large Language Models (LLMs) to bridge the gap between recommendations and human-interpretable explanations. In contrast to conventional recommendation systems that rely on implicit user-item interactions, ReasoningRec employs LLMs to model users and items, focusing on preferences, aversions, and explanatory reasoning. The framework utilizes a larger LLM to generate synthetic explanations for user preferences, subsequently used to fine-tune a smaller LLM for enhanced recommendation accuracy and human-interpretable explanation. Our experimental study investigates the impact of reasoning and contextual information on personalized recommendations, revealing that the quality of contextual and personalized data significantly influences the LLM's capacity to generate plausible explanations. Empirical evaluations demonstrate that ReasoningRec surpasses state-of-the-art methods by up to 12.5\% in recommendation prediction while concurrently providing human-intelligible explanations. The code is available here: https://github.com/millenniumbismay/reasoningrec.
ERASER: A Benchmark to Evaluate Rationalized NLP Models
State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the `reasoning' behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER) benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of "rationales" (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Despite their impressive capabilities, large pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which infers a correct answer to a question even from the noisy and inconsistent generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.
ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning
Large language models show improved downstream task performance when prompted to generate step-by-step reasoning to justify their final answers. These reasoning steps greatly improve model interpretability and verification, but objectively studying their correctness (independent of the final answer) is difficult without reliable methods for automatic evaluation. We simply do not know how often the stated reasoning steps actually support the final end task predictions. In this work, we present ROSCOE, a suite of interpretable, unsupervised automatic scores that improve and extend previous text generation evaluation metrics. To evaluate ROSCOE against baseline metrics, we design a typology of reasoning errors and collect synthetic and human evaluation scores on commonly used reasoning datasets. In contrast with existing metrics, ROSCOE can measure semantic consistency, logicality, informativeness, fluency, and factuality - among other traits - by leveraging properties of step-by-step rationales. We empirically verify the strength of our metrics on five human annotated and six programmatically perturbed diagnostics datasets - covering a diverse set of tasks that require reasoning skills and show that ROSCOE can consistently outperform baseline metrics.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data
Chain-of-thought prompting (CoT) advances the reasoning abilities of large language models (LLMs) and achieves superior performance in arithmetic, commonsense, and symbolic reasoning tasks. However, most CoT studies rely on carefully designed human-annotated rational chains to prompt the language model, which poses challenges for real-world applications where labeled training data is available without human-annotated rational chains. This creates barriers to applications of CoT prompting to these general tasks. This paper proposes a new strategy, Automate-CoT (Automatic Prompt Augmentation and Selection with Chain-of-Thought), that can bypass human engineering of CoTs by automatically augmenting rational chains from a small labeled dataset, and then pruning low-quality chains to construct a candidate pool of machine-generated rationale chains based on the labels. Finally, it selects the optimal combination of several rationale chains from the pool for CoT prompting by employing a variance-reduced policy gradient strategy to estimate the significance of each example in a black-box language model. Automate-CoT enables a quick adaptation of the CoT technique to different tasks. Experimental results demonstrate the effectiveness of our method, where state-of-the-art results are achieved on arithmetic reasoning (+2.7\%), commonsense reasoning (+3.4\%), symbolic reasoning (+3.2\%), and non-reasoning tasks (+2.5\%). Our code will be available at https://github.com/shizhediao/automate-cot.
Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning
In this paper, we propose R^3: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R^3 overcomes these limitations by learning from correct demonstrations. Specifically, R^3 progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R^3 establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by 4.1 points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by 4.2 points across three backbone models, and without any extra data, Codellama-7B + R^3 performs comparable to larger models or closed-source models.
LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback
Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.
Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models. While these methods can reflect the model's reasoning, they may not align with human intuition, making the explanations not plausible. In this work, we present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models. This incorporation enhances the plausibility of post-hoc explanations while preserving their faithfulness. Our approach is agnostic to model architectures and explainability methods. We introduce the rationales during model training by augmenting the standard cross-entropy loss with a novel loss function inspired by contrastive learning. By leveraging a multi-objective optimization algorithm, we explore the trade-off between the two loss functions and generate a Pareto-optimal frontier of models that balance performance and plausibility. Through extensive experiments involving diverse models, datasets, and explainability methods, we demonstrate that our approach significantly enhances the quality of model explanations without causing substantial (sometimes negligible) degradation in the original model's performance.
T-SciQ: Teaching Multimodal Chain-of-Thought Reasoning via Large Language Model Signals for Science Question Answering
Large Language Models (LLMs) have recently demonstrated exceptional performance in various Natural Language Processing (NLP) tasks. They have also shown the ability to perform chain-of-thought (CoT) reasoning to solve complex problems. Recent studies have explored CoT reasoning in complex multimodal scenarios, such as the science question answering task, by fine-tuning multimodal models with high-quality human-annotated CoT rationales. However, collecting high-quality COT rationales is usually time-consuming and costly. Besides, the annotated rationales are hardly accurate due to the external essential information missed. To address these issues, we propose a novel method termed T-SciQ that aims at teaching science question answering with LLM signals. The T-SciQ approach generates high-quality CoT rationales as teaching signals and is advanced to train much smaller models to perform CoT reasoning in complex modalities. Additionally, we introduce a novel data mixing strategy to produce more effective teaching data samples by policy for simple and complex science question answer problems. Extensive experimental results show that our T-SciQ method achieves a new state-of-the-art performance on the ScienceQA benchmark, with an accuracy of 96.18\%. Moreover, our approach outperforms the most powerful fine-tuned baseline by 4.5\%.
RobustFT: Robust Supervised Fine-tuning for Large Language Models under Noisy Response
Supervised fine-tuning (SFT) plays a crucial role in adapting large language models (LLMs) to specific domains or tasks. However, as demonstrated by empirical experiments, the collected data inevitably contains noise in practical applications, which poses significant challenges to model performance on downstream tasks. Therefore, there is an urgent need for a noise-robust SFT framework to enhance model capabilities in downstream tasks. To address this challenge, we introduce a robust SFT framework (RobustFT) that performs noise detection and relabeling on downstream task data. For noise identification, our approach employs a multi-expert collaborative system with inference-enhanced models to achieve superior noise detection. In the denoising phase, we utilize a context-enhanced strategy, which incorporates the most relevant and confident knowledge followed by careful assessment to generate reliable annotations. Additionally, we introduce an effective data selection mechanism based on response entropy, ensuring only high-quality samples are retained for fine-tuning. Extensive experiments conducted on multiple LLMs across five datasets demonstrate RobustFT's exceptional performance in noisy scenarios.
LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback
Mathematical verfier achieves success in mathematical reasoning tasks by validating the correctness of solutions. However, existing verifiers are trained with binary classification labels, which are not informative enough for the model to accurately assess the solutions. To mitigate the aforementioned insufficiency of binary labels, we introduce step-wise natural language feedbacks as rationale labels (i.e., the correctness of the current step and the explanations). In this paper, we propose Math-Minos, a natural language feedback enhanced verifier by constructing automatically-generated training data and a two-stage training paradigm for effective training and efficient inference. Our experiments reveal that a small set (30k) of natural language feedbacks can significantly boost the performance of the verifier by the accuracy of 1.6\% (86.6\% rightarrow 88.2\%) on GSM8K and 0.8\% (37.8\% rightarrow 38.6\%) on MATH. We have released our code and data for further exploration.
Preemptive Answer "Attacks" on Chain-of-Thought Reasoning
Large language models (LLMs) showcase impressive reasoning capabilities when coupled with Chain-of-Thought (CoT) prompting. However, the robustness of this approach warrants further investigation. In this paper, we introduce a novel scenario termed preemptive answers, where the LLM obtains an answer before engaging in reasoning. This situation can arise inadvertently or induced by malicious users by prompt injection attacks. Experiments reveal that preemptive answers significantly impair the model's reasoning capability across various CoT methods and a broad spectrum of datasets. To bolster the robustness of reasoning, we propose two measures aimed at mitigating this issue to some extent.
RL-STaR: Theoretical Analysis of Reinforcement Learning Frameworks for Self-Taught Reasoner
The reasoning abilities of large language models (LLMs) have improved with chain-of-thought (CoT) prompting, allowing models to solve complex tasks in a stepwise manner. However, training CoT capabilities requires detailed reasoning data, which is often scarce. The self-taught reasoner (STaR) framework addresses this by using reinforcement learning to automatically generate reasoning steps, reducing reliance on human-labeled data. Although STaR and its variants have demonstrated empirical success, a theoretical foundation explaining these improvements is lacking. This work provides a theoretical framework for understanding the effectiveness of reinforcement learning on CoT reasoning and STaR. Our contributions are: (1) an analysis of policy improvement, showing why LLM reasoning improves iteratively with STaR; (2) conditions for convergence to an optimal reasoning policy; (3) an examination of STaR's robustness, explaining how it can improve reasoning even when incorporating occasional incorrect steps; and (4) criteria for the quality of pre-trained models necessary to initiate effective reasoning improvement. This framework aims to bridge empirical findings with theoretical insights, advancing reinforcement learning approaches for reasoning in LLMs.
RECKONING: Reasoning through Dynamic Knowledge Encoding
Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., in-context reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the knowledge that is necessary to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question. Our method, RECKONING, is a bi-level learning algorithm that teaches language models to reason by updating their parametric knowledge through back-propagation, allowing them to then answer questions using the updated parameters. During training, the inner loop rapidly adapts a copy of the model weights to encode contextual knowledge into its parameters. In the outer loop, the model learns to use the updated weights to reproduce and answer reasoning questions about the memorized knowledge. Our experiments on two multi-hop reasoning datasets show that RECKONING's performance improves over the in-context reasoning baseline (by up to 4.5%). We also find that compared to in-context reasoning, RECKONING generalizes better to longer reasoning chains unseen during training, is more robust to distractors in the context, and is more computationally efficient when multiple questions are asked about the same knowledge.
RuleBert: Teaching Soft Rules to Pre-trained Language Models
While pre-trained language models (PLMs) are the go-to solution to tackle many natural language processing problems, they are still very limited in their ability to capture and to use common-sense knowledge. In fact, even if information is available in the form of approximate (soft) logical rules, it is not clear how to transfer it to a PLM in order to improve its performance for deductive reasoning tasks. Here, we aim to bridge this gap by teaching PLMs how to reason with soft Horn rules. We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis. We release the first dataset for this task, and we propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task. Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training. Moreover, we demonstrate that logical notions expressed by the rules are transferred to the fine-tuned model, yielding state-of-the-art results on external datasets.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
AutoReason: Automatic Few-Shot Reasoning Decomposition
Chain of Thought (CoT) was introduced in recent research as a method for improving step-by-step reasoning in Large Language Models. However, CoT has limited applications such as its need for hand-crafted few-shot exemplar prompts and no capability to adjust itself to different queries. In this work, we propose a system to automatically generate rationales using CoT. Our method improves multi-step implicit reasoning capabilities by decomposing the implicit query into several explicit questions. This provides interpretability for the model, improving reasoning in weaker LLMs. We test our approach with two Q\&A datasets: StrategyQA and HotpotQA. We show an increase in accuracy with both, especially on StrategyQA. To facilitate further research in this field, the complete source code for this study has been made publicly available on GitHub: https://github.com/miralab-ai/autoreason.
Calibrating Reasoning in Language Models with Internal Consistency
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks, aided by techniques like chain-of-thought (CoT) prompting that elicits verbalized reasoning. However, LLMs often generate text with obvious mistakes and contradictions, raising doubts about their ability to robustly process and utilize generated rationales. In this work, we investigate CoT reasoning in LLMs through the lens of internal representations, focusing on how these representations are influenced by generated rationales. Our preliminary analysis reveals that while generated rationales improve answer accuracy, inconsistencies emerge between the model's internal representations in middle layers and those in final layers, potentially undermining the reliability of their reasoning processes. To address this, we propose internal consistency as a measure of the model's confidence by examining the agreement of latent predictions decoded from intermediate layers. Extensive empirical studies across different models and datasets demonstrate that internal consistency effectively distinguishes between correct and incorrect reasoning paths. Motivated by this, we propose a new approach to calibrate CoT reasoning by up-weighting reasoning paths with high internal consistency, resulting in a significant boost in reasoning performance. Further analysis uncovers distinct patterns in attention and feed-forward modules across layers, providing insights into the emergence of internal inconsistency. In summary, our results demonstrate the potential of using internal representations for self-evaluation of LLMs.
Enhancing the Reasoning Capabilities of Small Language Models via Solution Guidance Fine-Tuning
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks. Advances in prompt engineering and fine-tuning techniques have further enhanced their ability to address complex reasoning challenges. However, these advanced capabilities are often exclusive to models exceeding 100 billion parameters. Although Chain-of-Thought (CoT) fine-tuning methods have been explored for smaller models (under 10 billion parameters), they typically depend on extensive CoT training data, which can introduce inconsistencies and limit effectiveness in low-data settings. To overcome these limitations, this paper introduce a new reasoning strategy Solution Guidance (SG) and a plug-and-play training paradigm Solution-Guidance Fine-Tuning (SGFT) for enhancing the reasoning capabilities of small language models. SG focuses on problem understanding and decomposition at the semantic and logical levels, rather than specific computations, which can effectively improve the SLMs' generalization and reasoning abilities. With only a small amount of SG training data, SGFT can fine-tune a SLM to produce accurate problem-solving guidances, which can then be flexibly fed to any SLM as prompts, enabling it to generate correct answers directly. Experimental results demonstrate that our method significantly improves the performance of SLMs on various reasoning tasks, enhancing both their practicality and efficiency within resource-constrained environments.
Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying
Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.
Let's Be Self-generated via Step by Step: A Curriculum Learning Approach to Automated Reasoning with Large Language Models
While Chain of Thought (CoT) prompting approaches have significantly consolidated the reasoning capabilities of large language models (LLMs), they still face limitations that require extensive human effort or have performance needs to be improved. Existing endeavors have focused on bridging these gaps; however, these approaches either hinge on external data and cannot completely eliminate manual effort, or they fall short in effectively directing LLMs to generate high-quality exemplary prompts. To address the said pitfalls, we propose a novel prompt approach for automatic reasoning named LBS3, inspired by curriculum learning which better reflects human learning habits. Specifically, LBS3 initially steers LLMs to recall easy-to-hard proxy queries that are pertinent to the target query. Following this, it invokes a progressive strategy that utilizes exemplary prompts stemmed from easy-proxy queries to direct LLMs in solving hard-proxy queries, enabling the high-quality of the proxy solutions. Finally, our extensive experiments in various reasoning-intensive tasks with varying open- and closed-source LLMs show that LBS3 achieves strongly competitive performance compared to the SOTA baselines.
Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs). CoT explicitly encourages the LLM to generate intermediate rationales for solving a problem, by providing a series of reasoning steps in the demonstrations. Despite its success, there is still little understanding of what makes CoT prompting effective and which aspects of the demonstrated reasoning steps contribute to its performance. In this paper, we show that CoT reasoning is possible even with invalid demonstrations - prompting with invalid reasoning steps can achieve over 80-90% of the performance obtained using CoT under various metrics, while still generating coherent lines of reasoning during inference. Further experiments show that other aspects of the rationales, such as being relevant to the query and correctly ordering the reasoning steps, are much more important for effective CoT reasoning. Overall, these findings both deepen our understanding of CoT prompting, and open up new questions regarding LLMs' capability to learn to reason in context.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models
The integration of slow-thinking mechanisms into large language models (LLMs) offers a promising way toward achieving Level 2 AGI Reasoners, as exemplified by systems like OpenAI's o1. However, several significant challenges remain, including inefficient overthinking and an overreliance on auxiliary reward models. We point out that these limitations stem from LLMs' inability to internalize the search process, a key component of effective reasoning. A critical step toward addressing this issue is enabling LLMs to autonomously determine when and where to backtrack, a fundamental operation in traditional search algorithms. To this end, we propose a self-backtracking mechanism that equips LLMs with the ability to backtrack during both training and inference. This mechanism not only enhances reasoning ability but also efficiency by transforming slow-thinking processes into fast-thinking through self-improvement. Empirical evaluations demonstrate that our proposal significantly enhances the reasoning capabilities of LLMs, achieving a performance gain of over 40 percent compared to the optimal-path supervised fine-tuning method. We believe this study introduces a novel and promising pathway for developing more advanced and robust Reasoners.
A Neural Conversational Model
Conversational modeling is an important task in natural language understanding and machine intelligence. Although previous approaches exist, they are often restricted to specific domains (e.g., booking an airline ticket) and require hand-crafted rules. In this paper, we present a simple approach for this task which uses the recently proposed sequence to sequence framework. Our model converses by predicting the next sentence given the previous sentence or sentences in a conversation. The strength of our model is that it can be trained end-to-end and thus requires much fewer hand-crafted rules. We find that this straightforward model can generate simple conversations given a large conversational training dataset. Our preliminary results suggest that, despite optimizing the wrong objective function, the model is able to converse well. It is able extract knowledge from both a domain specific dataset, and from a large, noisy, and general domain dataset of movie subtitles. On a domain-specific IT helpdesk dataset, the model can find a solution to a technical problem via conversations. On a noisy open-domain movie transcript dataset, the model can perform simple forms of common sense reasoning. As expected, we also find that the lack of consistency is a common failure mode of our model.
Demystifying Long Chain-of-Thought Reasoning in LLMs
Scaling inference compute enhances reasoning in large language models (LLMs), with long chains-of-thought (CoTs) enabling strategies like backtracking and error correction. Reinforcement learning (RL) has emerged as a crucial method for developing these capabilities, yet the conditions under which long CoTs emerge remain unclear, and RL training requires careful design choices. In this study, we systematically investigate the mechanics of long CoT reasoning, identifying the key factors that enable models to generate long CoT trajectories. Through extensive supervised fine-tuning (SFT) and RL experiments, we present four main findings: (1) While SFT is not strictly necessary, it simplifies training and improves efficiency; (2) Reasoning capabilities tend to emerge with increased training compute, but their development is not guaranteed, making reward shaping crucial for stabilizing CoT length growth; (3) Scaling verifiable reward signals is critical for RL. We find that leveraging noisy, web-extracted solutions with filtering mechanisms shows strong potential, particularly for out-of-distribution (OOD) tasks such as STEM reasoning; and (4) Core abilities like error correction are inherently present in base models, but incentivizing these skills effectively for complex tasks via RL demands significant compute, and measuring their emergence requires a nuanced approach. These insights provide practical guidance for optimizing training strategies to enhance long CoT reasoning in LLMs. Our code is available at: https://github.com/eddycmu/demystify-long-cot.
Bad Actor, Good Advisor: Exploring the Role of Large Language Models in Fake News Detection
Detecting fake news requires both a delicate sense of diverse clues and a profound understanding of the real-world background, which remains challenging for detectors based on small language models (SLMs) due to their knowledge and capability limitations. Recent advances in large language models (LLMs) have shown remarkable performance in various tasks, but whether and how LLMs could help with fake news detection remains underexplored. In this paper, we investigate the potential of LLMs in fake news detection. First, we conduct an empirical study and find that a sophisticated LLM such as GPT 3.5 could generally expose fake news and provide desirable multi-perspective rationales but still underperforms the basic SLM, fine-tuned BERT. Our subsequent analysis attributes such a gap to the LLM's inability to select and integrate rationales properly to conclude. Based on these findings, we propose that current LLMs may not substitute fine-tuned SLMs in fake news detection but can be a good advisor for SLMs by providing multi-perspective instructive rationales. To instantiate this proposal, we design an adaptive rationale guidance network for fake news detection (ARG), in which SLMs selectively acquire insights on news analysis from the LLMs' rationales. We further derive a rationale-free version of ARG by distillation, namely ARG-D, which services cost-sensitive scenarios without querying LLMs. Experiments on two real-world datasets demonstrate that ARG and ARG-D outperform three types of baseline methods, including SLM-based, LLM-based, and combinations of small and large language models.
Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.
Crystal: Introspective Reasoners Reinforced with Self-Feedback
Extensive work has shown that the performance and interpretability of commonsense reasoning can be improved via knowledge-augmented reasoning methods, where the knowledge that underpins the reasoning process is explicitly verbalized and utilized. However, existing implementations, including "chain-of-thought" and its variants, fall short in capturing the introspective nature of knowledge required in commonsense reasoning, and in accounting for the mutual adaptation between the generation and utilization of knowledge. We propose a novel method to develop an introspective commonsense reasoner, Crystal. To tackle commonsense problems, it first introspects for knowledge statements related to the given question, and subsequently makes an informed prediction that is grounded in the previously introspected knowledge. The knowledge introspection and knowledge-grounded reasoning modes of the model are tuned via reinforcement learning to mutually adapt, where the reward derives from the feedback given by the model itself. Experiments show that Crystal significantly outperforms both the standard supervised finetuning and chain-of-thought distilled methods, and enhances the transparency of the commonsense reasoning process. Our work ultimately validates the feasibility and potential of reinforcing a neural model with self-feedback.
Language Models with Rationality
While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent "beliefs". This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a rational, self-reflecting layer on top of the LLM. First, given a question, we construct a belief graph using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM.
Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations
Incorporating natural language rationales in the prompt and In-Context Learning (ICL) has led to a significant improvement of Large Language Models (LLMs) performance. However, rationales currently require human-annotation or the use of auxiliary proxy models to target promising samples or generate high-quality rationales. In this work, we propose Self-AMPLIFY to generate automatically rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on two SLMs and two datasets requiring reasoning abilities: these experiments show that Self-AMPLIFY achieves good results against competitors. Self-AMPLIFY is the first method to apply post hoc explanation methods to SLM to generate rationales to improve their own performance in a fully automated manner.
Towards Bridging the Gaps between the Right to Explanation and the Right to be Forgotten
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an algorithmic decision, the right to be forgotten grants them the right to ask for their data to be deleted from all the databases and models of an organization. Intuitively, enforcing the right to be forgotten may trigger model updates which in turn invalidate previously provided explanations, thus violating the right to explanation. In this work, we investigate the technical implications arising due to the interference between the two aforementioned regulatory principles, and propose the first algorithmic framework to resolve the tension between them. To this end, we formulate a novel optimization problem to generate explanations that are robust to model updates due to the removal of training data instances by data deletion requests. We then derive an efficient approximation algorithm to handle the combinatorial complexity of this optimization problem. We theoretically demonstrate that our method generates explanations that are provably robust to worst-case data deletion requests with bounded costs in case of linear models and certain classes of non-linear models. Extensive experimentation with real-world datasets demonstrates the efficacy of the proposed framework.
Faithful Reasoning Using Large Language Models
Although contemporary large language models (LMs) demonstrate impressive question-answering capabilities, their answers are typically the product of a single call to the model. This entails an unwelcome degree of opacity and compromises performance, especially on problems that are inherently multi-step. To address these limitations, we show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem. Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs, one for selection and one for inference, to produce a valid reasoning trace. Our method carries out a beam search through the space of reasoning traces to improve reasoning quality. We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy, and generates humanly interpretable reasoning traces whose validity can be checked by the user.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Free-text Rationale Generation under Readability Level Control
Free-text rationales justify model decisions in natural language and thus become likable and accessible among approaches to explanation across many tasks. However, their effectiveness can be hindered by misinterpretation and hallucination. As a perturbation test, we investigate how large language models (LLMs) perform rationale generation under the effects of readability level control, i.e., being prompted for an explanation targeting a specific expertise level, such as sixth grade or college. We find that explanations are adaptable to such instruction, though the requested readability is often misaligned with the measured text complexity according to traditional readability metrics. Furthermore, the generated rationales tend to feature medium level complexity, which correlates with the measured quality using automatic metrics. Finally, our human annotators confirm a generally satisfactory impression on rationales at all readability levels, with high-school-level readability being most commonly perceived and favored.
IAO Prompting: Making Knowledge Flow Explicit in LLMs through Structured Reasoning Templates
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, understanding and validating their knowledge utilization remains challenging. Chain-of-thought (CoT) prompting partially addresses this by revealing intermediate reasoning steps, but the knowledge flow and application remain implicit. We introduce IAO (Input-Action-Output) prompting, a structured template-based method that explicitly models how LLMs access and apply their knowledge during complex reasoning tasks. IAO decomposes problems into sequential steps, each clearly identifying the input knowledge being used, the action being performed, and the resulting output. This structured decomposition enables us to trace knowledge flow, verify factual consistency, and identify potential knowledge gaps or misapplications. Through experiments across diverse reasoning tasks, we demonstrate that IAO not only improves zero-shot performance but also provides transparency in how LLMs leverage their stored knowledge. Human evaluation confirms that this structured approach enhances our ability to verify knowledge utilization and detect potential hallucinations or reasoning errors. Our findings provide insights into both knowledge representation within LLMs and methods for more reliable knowledge application.
Mind the Gap! Injecting Commonsense Knowledge for Abstractive Dialogue Summarization
In this paper, we propose to leverage the unique characteristics of dialogues sharing commonsense knowledge across participants, to resolve the difficulties in summarizing them. We present SICK, a framework that uses commonsense inferences as additional context. Compared to previous work that solely relies on the input dialogue, SICK uses an external knowledge model to generate a rich set of commonsense inferences and selects the most probable one with a similarity-based selection method. Built upon SICK, SICK++ utilizes commonsense as supervision, where the task of generating commonsense inferences is added upon summarizing the dialogue in a multi-task learning setting. Experimental results show that with injected commonsense knowledge, our framework generates more informative and consistent summaries than existing methods.
MM-Eureka: Exploring Visual Aha Moment with Rule-based Large-scale Reinforcement Learning
We present MM-Eureka, a multimodal reasoning model that successfully extends large-scale rule-based reinforcement learning (RL) to multimodal reasoning. While rule-based RL has shown remarkable success in improving LLMs' reasoning abilities in text domains, its application to multimodal settings has remained challenging. Our work reproduces key characteristics of text-based RL systems like DeepSeek-R1 in the multimodal space, including steady increases in accuracy reward and response length, and the emergence of reflection behaviors. We demonstrate that both instruction-tuned and pre-trained models can develop strong multimodal reasoning capabilities through rule-based RL without supervised fine-tuning, showing superior data efficiency compared to alternative approaches. We open-source our complete pipeline to foster further research in this area. We release all our codes, models, data, etc. at https://github.com/ModalMinds/MM-EUREKA
The Impact of Reasoning Step Length on Large Language Models
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
Annotation Artifacts in Natural Language Inference Data
Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.
ClarifyDelphi: Reinforced Clarification Questions with Defeasibility Rewards for Social and Moral Situations
Context is everything, even in commonsense moral reasoning. Changing contexts can flip the moral judgment of an action; "Lying to a friend" is wrong in general, but may be morally acceptable if it is intended to protect their life. We present ClarifyDelphi, an interactive system that learns to ask clarification questions (e.g., why did you lie to your friend?) in order to elicit additional salient contexts of a social or moral situation. We posit that questions whose potential answers lead to diverging moral judgments are the most informative. Thus, we propose a reinforcement learning framework with a defeasibility reward that aims to maximize the divergence between moral judgments of hypothetical answers to a question. Human evaluation demonstrates that our system generates more relevant, informative and defeasible questions compared to competitive baselines. Our work is ultimately inspired by studies in cognitive science that have investigated the flexibility in moral cognition (i.e., the diverse contexts in which moral rules can be bent), and we hope that research in this direction can assist both cognitive and computational investigations of moral judgments.
Large Language Models Can Self-Improve
Large Language Models (LLMs) have achieved excellent performances in various tasks. However, fine-tuning an LLM requires extensive supervision. Human, on the other hand, may improve their reasoning abilities by self-thinking without external inputs. In this work, we demonstrate that an LLM is also capable of self-improving with only unlabeled datasets. We use a pre-trained LLM to generate "high-confidence" rationale-augmented answers for unlabeled questions using Chain-of-Thought prompting and self-consistency, and fine-tune the LLM using those self-generated solutions as target outputs. We show that our approach improves the general reasoning ability of a 540B-parameter LLM (74.4%->82.1% on GSM8K, 78.2%->83.0% on DROP, 90.0%->94.4% on OpenBookQA, and 63.4%->67.9% on ANLI-A3) and achieves state-of-the-art-level performance, without any ground truth label. We conduct ablation studies and show that fine-tuning on reasoning is critical for self-improvement.
ReFT: Reasoning with Reinforced Fine-Tuning
One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.
Automatic Intent-Slot Induction for Dialogue Systems
Automatically and accurately identifying user intents and filling the associated slots from their spoken language are critical to the success of dialogue systems. Traditional methods require manually defining the DOMAIN-INTENT-SLOT schema and asking many domain experts to annotate the corresponding utterances, upon which neural models are trained. This procedure brings the challenges of information sharing hindering, out-of-schema, or data sparsity in open-domain dialogue systems. To tackle these challenges, we explore a new task of {\em automatic intent-slot induction} and propose a novel domain-independent tool. That is, we design a coarse-to-fine three-step procedure including Role-labeling, Concept-mining, And Pattern-mining (RCAP): (1) role-labeling: extracting keyphrases from users' utterances and classifying them into a quadruple of coarsely-defined intent-roles via sequence labeling; (2) concept-mining: clustering the extracted intent-role mentions and naming them into abstract fine-grained concepts; (3) pattern-mining: applying the Apriori algorithm to mine intent-role patterns and automatically inferring the intent-slot using these coarse-grained intent-role labels and fine-grained concepts. Empirical evaluations on both real-world in-domain and out-of-domain datasets show that: (1) our RCAP can generate satisfactory SLU schema and outperforms the state-of-the-art supervised learning method; (2) our RCAP can be directly applied to out-of-domain datasets and gain at least 76\% improvement of F1-score on intent detection and 41\% improvement of F1-score on slot filling; (3) our RCAP exhibits its power in generic intent-slot extractions with less manual effort, which opens pathways for schema induction on new domains and unseen intent-slot discovery for generalizable dialogue systems.
Neural Algorithmic Reasoning with Causal Regularisation
Recent work on neural algorithmic reasoning has investigated the reasoning capabilities of neural networks, effectively demonstrating they can learn to execute classical algorithms on unseen data coming from the train distribution. However, the performance of existing neural reasoners significantly degrades on out-of-distribution (OOD) test data, where inputs have larger sizes. In this work, we make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically. This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step. Then, we employ a causal framework to design a corresponding self-supervised objective, and we prove that it improves the OOD generalisation capabilities of the reasoner. We evaluate our method on the CLRS algorithmic reasoning benchmark, where we show up to 3times improvements on the OOD test data.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Though
We propose a novel framework, Meta Chain-of-Thought (Meta-CoT), which extends traditional Chain-of-Thought (CoT) by explicitly modeling the underlying reasoning required to arrive at a particular CoT. We present empirical evidence from state-of-the-art models exhibiting behaviors consistent with in-context search, and explore methods for producing Meta-CoT via process supervision, synthetic data generation, and search algorithms. Finally, we outline a concrete pipeline for training a model to produce Meta-CoTs, incorporating instruction tuning with linearized search traces and reinforcement learning post-training. Finally, we discuss open research questions, including scaling laws, verifier roles, and the potential for discovering novel reasoning algorithms. This work provides a theoretical and practical roadmap to enable Meta-CoT in LLMs, paving the way for more powerful and human-like reasoning in artificial intelligence.
Pre-training Is (Almost) All You Need: An Application to Commonsense Reasoning
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks. Most of the existing approaches rely on a randomly initialized classifier on top of such networks. We argue that this fine-tuning procedure is sub-optimal as the pre-trained model has no prior on the specific classifier labels, while it might have already learned an intrinsic textual representation of the task. In this paper, we introduce a new scoring method that casts a plausibility ranking task in a full-text format and leverages the masked language modeling head tuned during the pre-training phase. We study commonsense reasoning tasks where the model must rank a set of hypotheses given a premise, focusing on the COPA, Swag, HellaSwag and CommonsenseQA datasets. By exploiting our scoring method without fine-tuning, we are able to produce strong baselines (e.g. 80% test accuracy on COPA) that are comparable to supervised approaches. Moreover, when fine-tuning directly on the proposed scoring function, we show that our method provides a much more stable training phase across random restarts (e.g times 10 standard deviation reduction on COPA test accuracy) and requires less annotated data than the standard classifier approach to reach equivalent performances.
Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life Anecdotes
As AI systems become an increasing part of people's everyday lives, it becomes ever more important that they understand people's ethical norms. Motivated by descriptive ethics, a field of study that focuses on people's descriptive judgments rather than theoretical prescriptions on morality, we investigate a novel, data-driven approach to machine ethics. We introduce Scruples, the first large-scale dataset with 625,000 ethical judgments over 32,000 real-life anecdotes. Each anecdote recounts a complex ethical situation, often posing moral dilemmas, paired with a distribution of judgments contributed by the community members. Our dataset presents a major challenge to state-of-the-art neural language models, leaving significant room for improvement. However, when presented with simplified moral situations, the results are considerably more promising, suggesting that neural models can effectively learn simpler ethical building blocks. A key take-away of our empirical analysis is that norms are not always clean-cut; many situations are naturally divisive. We present a new method to estimate the best possible performance on such tasks with inherently diverse label distributions, and explore likelihood functions that separate intrinsic from model uncertainty.
Exploiting Reasoning Chains for Multi-hop Science Question Answering
We propose a novel Chain Guided Retriever-reader ({\tt CGR}) framework to model the reasoning chain for multi-hop Science Question Answering. Our framework is capable of performing explainable reasoning without the need of any corpus-specific annotations, such as the ground-truth reasoning chain, or human-annotated entity mentions. Specifically, we first generate reasoning chains from a semantic graph constructed by Abstract Meaning Representation of retrieved evidence facts. A Chain-aware loss, concerning both local and global chain information, is also designed to enable the generated chains to serve as distant supervision signals for training the retriever, where reinforcement learning is also adopted to maximize the utility of the reasoning chains. Our framework allows the retriever to capture step-by-step clues of the entire reasoning process, which is not only shown to be effective on two challenging multi-hop Science QA tasks, namely OpenBookQA and ARC-Challenge, but also favors explainability.
Large Language Models can Learn Rules
When prompted with a few examples and intermediate steps, large language models (LLMs) have demonstrated impressive performance in various reasoning tasks. However, prompting methods that rely on implicit knowledge in an LLM often generate incorrect answers when the implicit knowledge is wrong or inconsistent with the task. To tackle this problem, we present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with LLMs. HtT contains two stages, an induction stage and a deduction stage. In the induction stage, an LLM is first asked to generate and verify rules over a set of training examples. Rules that appear and lead to correct answers sufficiently often are collected to form a rule library. In the deduction stage, the LLM is then prompted to employ the learned rule library to perform reasoning to answer test questions. Experiments on relational reasoning, numerical reasoning and concept learning problems show that HtT improves existing prompting methods, with an absolute gain of 10-30% in accuracy. The learned rules are also transferable to different models and to different forms of the same problem.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
TinyThinker: Distilling Reasoning through Coarse-to-Fine Knowledge Internalization with Self-Reflection
Large Language Models exhibit impressive reasoning capabilities across diverse tasks, motivating efforts to distill these capabilities into smaller models through generated reasoning data. However, direct training on such synthesized reasoning data may lead to superficial imitation of reasoning process, rather than fostering a genuine integration of reasoning capabilities with underlying knowledge. To address this, we propose TinyThinker, a framework introducing two novel approaches. First, we introduce a three-stage process that incrementally guides the student model through the reasoning process, progressively refining knowledge from coarse to fine granularity. Second, we develop a two-phase training framework comprising an initial reasoning acquisition phase followed by a self-reflection phase utilizing self-generated data. Experiments on commonsense reasoning benchmarks demonstrate that TinyThinker achieves superior performance compared to baselines. Ablation studies further validate the effectiveness of each component in our framework. TinyThinker is extendable to other knowledge-intensive reasoning tasks, offering an alternative strategy for developing effective reasoning capabilities in smaller language models. Codes are available at https://github.com/shengminp/TinyThinker
A NotSo Simple Way to Beat Simple Bench
This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs) by leveraging iterative reasoning and feedback-driven methodologies. Building on the limitations identified in the SimpleBench benchmark, a dataset designed to evaluate logical coherence and real-world reasoning, we propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness. Through comparative analysis of state-of-the-art models, including Claude 3 Opus, Claude 3.5, GPT- 4o, and o1-preview, we demonstrate that iterative reasoning significantly enhances model performance, with improvements observed in both standard accuracy metrics (AVG@5) and a newly introduced metric, Extreme Averaging (EAG@5). Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts. By analyzing case studies and identifying gaps in spatial and temporal reasoning, we highlight areas for further refinement. The findings underscore the potential of structured reasoning frameworks to address inherent model limitations, irrespective of pretraining methodologies. This study lays the groundwork for integrating dynamic feedback mechanisms, adaptive restart strategies, and diverse evaluation metrics to advance LLM reasoning capabilities across complex and multi-domain problem spaces.
SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales
Large language models (LLMs) often generate inaccurate or fabricated information and generally fail to indicate their confidence, which limits their broader applications. Previous work elicits confidence from LLMs by direct or self-consistency prompting, or constructing specific datasets for supervised finetuning. The prompting-based approaches have inferior performance, and the training-based approaches are limited to binary or inaccurate group-level confidence estimates. In this work, we present the advanced SaySelf, a training framework that teaches LLMs to express more accurate fine-grained confidence estimates. In addition, beyond the confidence scores, SaySelf initiates the process of directing LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge and explain their uncertainty. This is achieved by using an LLM to automatically summarize the uncertainties in specific knowledge via natural language. The summarization is based on the analysis of the inconsistency in multiple sampled reasoning chains, and the resulting data is utilized for supervised fine-tuning. Moreover, we utilize reinforcement learning with a meticulously crafted reward function to calibrate the confidence estimates, motivating LLMs to deliver accurate, high-confidence predictions and to penalize overconfidence in erroneous outputs. Experimental results in both in-distribution and out-of-distribution datasets demonstrate the effectiveness of SaySelf in reducing the confidence calibration error and maintaining the task performance. We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration. The code is made public at https://github.com/xu1868/SaySelf.
Interpretable Proof Generation via Iterative Backward Reasoning
We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github.com/find-knowledge/IBR .
Two Heads Are Better Than One: Dual-Model Verbal Reflection at Inference-Time
Large Language Models (LLMs) often struggle with complex reasoning scenarios. While preference optimization methods enhance reasoning performance through training, they often lack transparency in why one reasoning outcome is preferred over another. Verbal reflection techniques improve explainability but are limited in LLMs' critique and refinement capacity. To address these challenges, we introduce a contrastive reflection synthesis pipeline that enhances the accuracy and depth of LLM-generated reflections. We further propose a dual-model reasoning framework within a verbal reinforcement learning paradigm, decoupling inference-time self-reflection into specialized, trained models for reasoning critique and refinement. Extensive experiments show that our framework outperforms traditional preference optimization methods across all evaluation metrics. Our findings also show that "two heads are better than one", demonstrating that a collaborative Reasoner-Critic model achieves superior reasoning performance and transparency, compared to single-model approaches.
REFINER: Reasoning Feedback on Intermediate Representations
Language models (LMs) have recently shown remarkable performance on reasoning tasks by explicitly generating intermediate inferences, e.g., chain-of-thought prompting. However, these intermediate inference steps may be inappropriate deductions from the initial context and lead to incorrect final predictions. Here we introduce REFINER, a framework for finetuning LMs to explicitly generate intermediate reasoning steps while interacting with a critic model that provides automated feedback on the reasoning. Specifically, the critic provides structured feedback that the reasoning LM uses to iteratively improve its intermediate arguments. Empirical evaluations of REFINER on three diverse reasoning tasks show significant improvements over baseline LMs of comparable scale. Furthermore, when using GPT-3.5 or ChatGPT as the reasoner, the trained critic significantly improves reasoning without finetuning the reasoner. Finally, our critic model is trained without expensive human-in-the-loop data but can be substituted with humans at inference time.
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
Logic Diffusion for Knowledge Graph Reasoning
Most recent works focus on answering first order logical queries to explore the knowledge graph reasoning via multi-hop logic predictions. However, existing reasoning models are limited by the circumscribed logical paradigms of training samples, which leads to a weak generalization of unseen logic. To address these issues, we propose a plug-in module called Logic Diffusion (LoD) to discover unseen queries from surroundings and achieves dynamical equilibrium between different kinds of patterns. The basic idea of LoD is relation diffusion and sampling sub-logic by random walking as well as a special training mechanism called gradient adaption. Besides, LoD is accompanied by a novel loss function to further achieve the robust logical diffusion when facing noisy data in training or testing sets. Extensive experiments on four public datasets demonstrate the superiority of mainstream knowledge graph reasoning models with LoD over state-of-the-art. Moreover, our ablation study proves the general effectiveness of LoD on the noise-rich knowledge graph.
Making Long-Context Language Models Better Multi-Hop Reasoners
Recent advancements in long-context modeling have enhanced language models (LMs) for complex tasks across multiple NLP applications. Despite this progress, we find that these models struggle with multi-hop reasoning and exhibit decreased performance in the presence of noisy contexts. In this paper, we introduce Reasoning with Attributions, a novel approach that prompts LMs to supply attributions for each assertion during their reasoning. We validate our approach through experiments on three multi-hop datasets, employing both proprietary and open-source models, and demonstrate its efficacy and resilience. Furthermore, we explore methods to augment reasoning capabilities via fine-tuning and offer an attribution-annotated dataset and a specialized training strategy. Our fine-tuned model achieves competitive performance on multi-hop reasoning benchmarks, closely paralleling proprietary LMs such as ChatGPT and Claude-instant.
Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks that require a compound understanding of knowledge. However, deployment of the LLMs in real-world applications can be challenging due to their high computational requirements and concerns on data privacy. Previous studies have focused on building task-specific small language models (LMs) by fine-tuning them with labeled data or distilling LLMs. However, these approaches are ill-suited for knowledge-intensive reasoning tasks due to the limited capacity of small LMs in memorizing the knowledge required. Motivated by our theoretical analysis on memorization, we propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales with augmented knowledge retrieved from an external knowledge base. Moreover, we further propose a neural reranker to obtain documents relevant to rationale generation. We empirically show that KARD significantly improves the performance of small T5 and Flan-T5 models on the challenging knowledge-intensive reasoning datasets, namely MedQA-USMLE and StrategyQA. Notably, our method makes the 250M models achieve superior performance against the fine-tuned 3B models, having 12 times larger parameters, on both MedQA-USMLE and StrategyQA benchmarks.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
COLEP: Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic Circuits
Conformal prediction has shown spurring performance in constructing statistically rigorous prediction sets for arbitrary black-box machine learning models, assuming the data is exchangeable. However, even small adversarial perturbations during the inference can violate the exchangeability assumption, challenge the coverage guarantees, and result in a subsequent decline in empirical coverage. In this work, we propose a certifiably robust learning-reasoning conformal prediction framework (COLEP) via probabilistic circuits, which comprise a data-driven learning component that trains statistical models to learn different semantic concepts, and a reasoning component that encodes knowledge and characterizes the relationships among the trained models for logic reasoning. To achieve exact and efficient reasoning, we employ probabilistic circuits (PCs) within the reasoning component. Theoretically, we provide end-to-end certification of prediction coverage for COLEP in the presence of bounded adversarial perturbations. We also provide certified coverage considering the finite size of the calibration set. Furthermore, we prove that COLEP achieves higher prediction coverage and accuracy over a single model as long as the utilities of knowledge models are non-trivial. Empirically, we show the validity and tightness of our certified coverage, demonstrating the robust conformal prediction of COLEP on various datasets, including GTSRB, CIFAR10, and AwA2. We show that COLEP achieves up to 12% improvement in certified coverage on GTSRB, 9% on CIFAR-10, and 14% on AwA2.
Chain-of-Thought Reasoning Without Prompting
In enhancing the reasoning capabilities of large language models (LLMs), prior research primarily focuses on specific prompting techniques such as few-shot or zero-shot chain-of-thought (CoT) prompting. These methods, while effective, often involve manually intensive prompt engineering. Our study takes a novel approach by asking: Can LLMs reason effectively without prompting? Our findings reveal that, intriguingly, CoT reasoning paths can be elicited from pre-trained LLMs by simply altering the decoding process. Rather than conventional greedy decoding, we investigate the top-k alternative tokens, uncovering that CoT paths are frequently inherent in these sequences. This approach not only bypasses the confounders of prompting but also allows us to assess the LLMs' intrinsic reasoning abilities. Moreover, we observe that the presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer. This confidence metric effectively differentiates between CoT and non-CoT paths. Extensive empirical studies on various reasoning benchmarks show that the proposed CoT-decoding substantially outperforms the standard greedy decoding.
LogiCoT: Logical Chain-of-Thought Instruction-Tuning Data Collection with GPT-4
Generative Pre-trained Transformer 4 (GPT-4) demonstrates impressive chain-of-thought reasoning ability. Recent work on self-instruction tuning, such as Alpaca, has focused on enhancing the general proficiency of models. These instructions enable the model to achieve performance comparable to GPT-3.5 on general tasks like open-domain text generation and paraphrasing. However, they fall short of helping the model handle complex reasoning tasks. To bridge the gap, this paper presents LogiCoT, a new instruction-tuning dataset for Logical Chain-of-Thought reasoning with GPT-4. We elaborate on the process of harvesting instructions for prompting GPT-4 to generate chain-of-thought rationales. LogiCoT serves as an instruction set for teaching models of logical reasoning and elicits general reasoning skills.
Rethinking with Retrieval: Faithful Large Language Model Inference
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles
Template Filling for Controllable Commonsense Reasoning
Large-scale sequence-to-sequence models have shown to be adept at both multiple-choice and open-domain commonsense reasoning tasks. However, the current systems do not provide the ability to control the various attributes of the reasoning chain. To enable better controllability, we propose to study the commonsense reasoning as a template filling task (TemplateCSR) -- where the language models fills reasoning templates with the given constraints as control factors. As an approach to TemplateCSR, we (i) propose a dataset of commonsense reasoning template-expansion pairs and (ii) introduce POTTER, a pretrained sequence-to-sequence model using prompts to perform commonsense reasoning across concepts. Our experiments show that our approach outperforms baselines both in generation metrics and factuality metrics. We also present a detailed error analysis on our approach's ability to reliably perform commonsense reasoning.
LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models
Generating accurate step-by-step reasoning is essential for Large Language Models (LLMs) to address complex problems and enhance robustness and interpretability. Despite the flux of research on developing advanced reasoning approaches, systematically analyzing the diverse LLMs and reasoning strategies in generating reasoning chains remains a significant challenge. The difficulties stem from the lack of two key elements: (1) an automatic method for evaluating the generated reasoning chains on different tasks, and (2) a unified formalism and implementation of the diverse reasoning approaches for systematic comparison. This paper aims to close the gap: (1) We introduce AutoRace for fully automated reasoning chain evaluation. Existing metrics rely on expensive human annotations or pre-defined LLM prompts not adaptable to different tasks. In contrast, AutoRace automatically creates detailed evaluation criteria tailored for each task, and uses GPT-4 for accurate evaluation following the criteria. (2) We develop LLM Reasoners, a library for standardized modular implementation of existing and new reasoning algorithms, under a unified formulation of the search, reward, and world model components. With the new evaluation and library, (3) we conduct extensive study of different reasoning approaches (e.g., CoT, ToT, RAP). The analysis reveals interesting findings about different factors contributing to reasoning, including the reward-guidance, breadth-vs-depth in search, world model, and prompt formats, etc.
Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples
Given the intractably large size of the space of proofs, any model that is capable of general deductive reasoning must generalize to proofs of greater complexity. Recent studies have shown that large language models (LLMs) possess some abstract deductive reasoning ability given chain-of-thought prompts. However, they have primarily been tested on proofs using modus ponens or of a specific size, and from the same distribution as the in-context examples. To measure the general deductive reasoning ability of LLMs, we test on a broad set of deduction rules and measure their ability to generalize to more complex proofs from simpler demonstrations from multiple angles: depth-, width-, and compositional generalization. To facilitate systematic exploration, we construct a new synthetic and programmable reasoning dataset that enables control over deduction rules and proof complexity. Our experiments on four LLMs of various sizes and training objectives show that they are able to generalize to longer and compositional proofs. However, they require explicit demonstrations to produce hypothetical subproofs, specifically in proof by cases and proof by contradiction.
Rank1: Test-Time Compute for Reranking in Information Retrieval
We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
Learning From Correctness Without Prompting Makes LLM Efficient Reasoner
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm Learning from Correctness (LeCo), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.
Graph Transformer for Recommendation
This paper presents a novel approach to representation learning in recommender systems by integrating generative self-supervised learning with graph transformer architecture. We highlight the importance of high-quality data augmentation with relevant self-supervised pretext tasks for improving performance. Towards this end, we propose a new approach that automates the self-supervision augmentation process through a rationale-aware generative SSL that distills informative user-item interaction patterns. The proposed recommender with Graph TransFormer (GFormer) that offers parameterized collaborative rationale discovery for selective augmentation while preserving global-aware user-item relationships. In GFormer, we allow the rationale-aware SSL to inspire graph collaborative filtering with task-adaptive invariant rationalization in graph transformer. The experimental results reveal that our GFormer has the capability to consistently improve the performance over baselines on different datasets. Several in-depth experiments further investigate the invariant rationale-aware augmentation from various aspects. The source code for this work is publicly available at: https://github.com/HKUDS/GFormer.
InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations
While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel Adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model's predicted label when it's not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.
Diversity Aware Relevance Learning for Argument Search
In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.
Successive Prompting for Decomposing Complex Questions
Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.
Solving math word problems with process- and outcome-based feedback
Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks. When moving beyond prompting, this raises the question of how we should supervise such models: outcome-based approaches which supervise the final result, or process-based approaches which supervise the reasoning process itself? Differences between these approaches might naturally be expected not just in final-answer errors but also in reasoning errors, which can be difficult to detect and are problematic in many real-world domains such as education. We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task, GSM8K. We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision. However, for correct reasoning steps we find it necessary to use process-based supervision or supervision from learned reward models that emulate process-based feedback. In total, we improve the previous best results from 16.8% to 12.7% final-answer error and 14.0% to 3.4% reasoning error among final-answer-correct solutions.
RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by Reversing Chain-of-Thought
Large language Models (LLMs) have achieved promising performance on arithmetic reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting. However, LLMs face challenges in maintaining factual consistency during reasoning, exhibiting tendencies to condition overlooking, question misinterpretation, and condition hallucination over given problems. Existing methods use coarse-grained feedback (e.g., whether the answer is correct) to improve factual consistency. In this work, we propose RCoT (Reversing Chain-of-Thought), a novel method to improve LLMs' reasoning abilities by automatically detecting and rectifying factual inconsistency in LLMs' generated solutions. To detect factual inconsistency, RCoT first asks LLMs to reconstruct the problem based on generated solutions. Then fine-grained comparisons between the original problem and the reconstructed problem expose the factual inconsistency in the original solutions. To rectify the solution, RCoT formulates detected factual inconsistency into fine-grained feedback to guide LLMs in revising solutions. Experimental results demonstrate consistent improvements of RCoT over standard CoT across seven arithmetic datasets. Moreover, we find that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities (e.g., ChatGPT reaches 94.6% accuracy on GSM8K), encouraging the community to further explore the fine-grained feedback generation methods.
Deduction under Perturbed Evidence: Probing Student Simulation Capabilities of Large Language Models
We explore whether Large Language Models (LLMs) are capable of logical reasoning with distorted facts, which we call Deduction under Perturbed Evidence (DUPE). DUPE presents a unique challenge to LLMs since they typically rely on their parameters, which encode mostly accurate information, to reason and make inferences. However, in DUPE, LLMs must reason over manipulated or falsified evidence present in their prompts, which can result in false conclusions that are valid only under the manipulated evidence. Our goal with DUPE is to determine whether LLMs can arrive at these false conclusions and identify whether the dominant factor influencing the deduction process is the encoded data in the parameters or the manipulated evidence in the prompts. To evaluate the DUPE capabilities of LLMs, we create a DUPEd version of the StrategyQA dataset, where facts are manipulated to reverse the answer to the question. Our findings show that even the most advanced GPT models struggle to reason on manipulated facts - showcasing poor DUPE skills - with accuracy dropping by 45% compared to the original dataset. We also investigate prompt settings inspired from student simulation models, which mitigate the accuracy drop to some extent. Our findings have practical implications for understanding the performance of LLMs in real-world applications such as student simulation models that involve reasoning over inaccurate information.
SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks by generating intermediate reasoning steps. However, most existing approaches focus on hard token decoding, which constrains reasoning within the discrete vocabulary space and may not always be optimal. While recent efforts explore continuous-space reasoning, they often suffer from catastrophic forgetting, limiting their applicability to state-of-the-art LLMs that already perform well in zero-shot settings with a proper instruction. To address this challenge, we propose a novel approach for continuous-space reasoning that does not require modifying the underlying LLM. Specifically, we employ a lightweight assistant model to generate instance-specific soft thought tokens speculatively as the initial chain of thoughts, which are then mapped into the LLM's representation space via a projection module. Experimental results on five reasoning benchmarks demonstrate that our method enhances LLM reasoning performance through supervised, parameter-efficient fine-tuning.
Improving alignment of dialogue agents via targeted human judgements
We present Sparrow, an information-seeking dialogue agent trained to be more helpful, correct, and harmless compared to prompted language model baselines. We use reinforcement learning from human feedback to train our models with two new additions to help human raters judge agent behaviour. First, to make our agent more helpful and harmless, we break down the requirements for good dialogue into natural language rules the agent should follow, and ask raters about each rule separately. We demonstrate that this breakdown enables us to collect more targeted human judgements of agent behaviour and allows for more efficient rule-conditional reward models. Second, our agent provides evidence from sources supporting factual claims when collecting preference judgements over model statements. For factual questions, evidence provided by Sparrow supports the sampled response 78% of the time. Sparrow is preferred more often than baselines while being more resilient to adversarial probing by humans, violating our rules only 8% of the time when probed. Finally, we conduct extensive analyses showing that though our model learns to follow our rules it can exhibit distributional biases.
SCREWS: A Modular Framework for Reasoning with Revisions
Large language models (LLMs) can improve their accuracy on various tasks through iteratively refining and revising their output based on feedback. We observe that these revisions can introduce errors, in which case it is better to roll back to a previous result. Further, revisions are typically homogeneous: they use the same reasoning method that produced the initial answer, which may not correct errors. To enable exploration in this space, we present SCREWS, a modular framework for reasoning with revisions. It is comprised of three main modules: Sampling, Conditional Resampling, and Selection, each consisting of sub-modules that can be hand-selected per task. We show that SCREWS not only unifies several previous approaches under a common framework, but also reveals several novel strategies for identifying improved reasoning chains. We evaluate our framework with state-of-the-art LLMs (ChatGPT and GPT-4) on a diverse set of reasoning tasks and uncover useful new reasoning strategies for each: arithmetic word problems, multi-hop question answering, and code debugging. Heterogeneous revision strategies prove to be important, as does selection between original and revised candidates.
Explaining Answers with Entailment Trees
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a "rationale'"). If this could be done, new opportunities for understanding and debugging the system's reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.
FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation
We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.
Distilling Reasoning Capabilities into Smaller Language Models
Step-by-step reasoning approaches like chain of thought (CoT) have proved to be very effective in inducing reasoning capabilities in large language models. However, the success of the CoT approach is fundamentally tied to the model size, and billion parameter-scale models are often needed to get CoT to work. In this paper, we propose a knowledge distillation approach that leverages the step-by-step CoT reasoning capabilities of larger models and distills these abilities into smaller models. In this work, we propose an alternative reasoning scheme, Socratic CoT, that learns a decomposition of the original problem into a sequence of subproblems and uses it to guide the intermediate reasoning steps. We use Socratic CoT to train a combination of two small distilled models: a problem decomposer and a subproblem solver. In practice, given a new problem, the two distilled models work in sync to decompose and solve complex problems. On multiple reasoning datasets (GSM8K, StrategyQA, and SVAMP), our proposed distillation strategies boosts the performance of smaller models over 70% compared to the baselines. Finally, we investigate when Socratic CoT is an effective alternative to CoT, demonstrating cases where a much smaller model (GPT-2 large) can outperform a 10X larger model (GPT-3 6B). Our code is available here: https://github.com/kumar-shridhar/Distiiling-LM
Causal Proxy Models for Concept-Based Model Explanations
Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model N because it is trained to have the same actual input/output behavior as N while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of N. Furthermore, we show that the best CPM for N performs comparably to N in making factual predictions, which means that the CPM can simply replace N, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model.
Let's reward step by step: Step-Level reward model as the Navigators for Reasoning
Recent years have seen considerable advancements in multi-step reasoning with Large Language Models (LLMs). The previous studies have elucidated the merits of integrating feedback or search mechanisms during model inference to improve the reasoning accuracy. The Process-Supervised Reward Model (PRM), typically furnishes LLMs with step-by-step feedback during the training phase, akin to Proximal Policy Optimization (PPO) or reject sampling. Our objective is to examine the efficacy of PRM in the inference phase to help discern the optimal solution paths for multi-step tasks such as mathematical reasoning and code generation. To this end, we propose a heuristic greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs. This tailored PRM demonstrated enhanced results compared to the Chain of Thought (CoT) on mathematical benchmarks like GSM8K and MATH. Additionally, to explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks. Thus highlighting the robust nature of our reward-model-based approach to inference for reasoning tasks.
Alignment faking in large language models
We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data--and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference--as in this case--or not.
Optimizing Language Model's Reasoning Abilities with Weak Supervision
While Large Language Models (LLMs) have demonstrated proficiency in handling complex queries, much of the past work has depended on extensively annotated datasets by human experts. However, this reliance on fully-supervised annotations poses scalability challenges, particularly as models and data requirements grow. To mitigate this, we explore the potential of enhancing LLMs' reasoning abilities with minimal human supervision. In this work, we introduce self-reinforcement, which begins with Supervised Fine-Tuning (SFT) of the model using a small collection of annotated questions. Then it iteratively improves LLMs by learning from the differences in responses from the SFT and unfinetuned models on unlabeled questions. Our approach provides an efficient approach without relying heavily on extensive human-annotated explanations. However, current reasoning benchmarks typically only include golden-reference answers or rationales. Therefore, we present PuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales across various domains, such as brainteasers, puzzles, riddles, parajumbles, and critical reasoning tasks. A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities. Our experiments underscore the significance of PuzzleBen, as well as the effectiveness of our methodology as a promising direction in future endeavors. Our dataset and code will be published soon on Anonymity Link.
Guided Generation of Cause and Effect
We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns CausalBank; and a refinement over previous work on constructing large lexical causal knowledge graphs Cause Effect Graph. Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture.
Understanding Chain-of-Thought in LLMs through Information Theory
Large Language Models (LLMs) have shown impressive performance in complex reasoning tasks through Chain-of-Thought (CoT) reasoning, allowing models to break down problems into manageable sub-tasks. However, existing CoT evaluation techniques either require annotated CoT data or fall short in accurately assessing intermediate reasoning steps, leading to high rates of false positives. In this paper, we formalize CoT reasoning in LLMs through an information-theoretic lens. Specifically, our framework quantifies the `information gain' at each reasoning step, enabling the identification of failure modes in LLMs without the need for expensive annotated datasets. We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods by providing more accurate insights into model performance on individual tasks.
From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis
We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct 50k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at https://github.com/steven-ccq/VisualReasoner.
Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations
While the evaluation of explanations is an important step towards trustworthy models, it needs to be done carefully, and the employed metrics need to be well-understood. Specifically model randomization testing is often overestimated and regarded as a sole criterion for selecting or discarding certain explanation methods. To address shortcomings of this test, we start by observing an experimental gap in the ranking of explanation methods between randomization-based sanity checks [1] and model output faithfulness measures (e.g. [25]). We identify limitations of model-randomization-based sanity checks for the purpose of evaluating explanations. Firstly, we show that uninformative attribution maps created with zero pixel-wise covariance easily achieve high scores in this type of checks. Secondly, we show that top-down model randomization preserves scales of forward pass activations with high probability. That is, channels with large activations have a high probility to contribute strongly to the output, even after randomization of the network on top of them. Hence, explanations after randomization can only be expected to differ to a certain extent. This explains the observed experimental gap. In summary, these results demonstrate the inadequacy of model-randomization-based sanity checks as a criterion to rank attribution methods.
The Lessons of Developing Process Reward Models in Mathematical Reasoning
Process Reward Models (PRMs) emerge as a promising approach for process supervision in mathematical reasoning of Large Language Models (LLMs), which aim to identify and mitigate intermediate errors in the reasoning processes. However, the development of effective PRMs faces significant challenges, particularly in data annotation and evaluation methodologies. In this paper, through extensive experiments, we demonstrate that commonly used Monte Carlo (MC) estimation-based data synthesis for PRMs typically yields inferior performance and generalization compared to LLM-as-a-judge and human annotation methods. MC estimation relies on completion models to evaluate current-step correctness, leading to inaccurate step verification. Furthermore, we identify potential biases in conventional Best-of-N (BoN) evaluation strategies for PRMs: (1) The unreliable policy models generate responses with correct answers but flawed processes, leading to a misalignment between the evaluation criteria of BoN and the PRM objectives of process verification. (2) The tolerance of PRMs of such responses leads to inflated BoN scores. (3) Existing PRMs have a significant proportion of minimum scores concentrated on the final answer steps, revealing the shift from process to outcome-based assessment in BoN Optimized PRMs. To address these challenges, we develop a consensus filtering mechanism that effectively integrates MC estimation with LLM-as-a-judge and advocates a more comprehensive evaluation framework that combines response-level and step-level metrics. Based on the mechanisms, we significantly improve both model performance and data efficiency in the BoN evaluation and the step-wise error identification task. Finally, we release a new state-of-the-art PRM that outperforms existing open-source alternatives and provides practical guidelines for future research in building process supervision models.
Eliciting Human Preferences with Language Models
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts for can be challenging--especially in tasks that involve unusual edge cases, demand precise articulation of nebulous preferences, or require an accurate mental model of LM behavior. We propose to use *LMs themselves* to guide the task specification process. In this paper, we introduce **Generative Active Task Elicitation (GATE)**: a learning framework in which models elicit and infer intended behavior through free-form, language-based interaction with users. We study GATE in three domains: email validation, content recommendation, and moral reasoning. In preregistered experiments, we show that LMs prompted to perform GATE (e.g., by generating open-ended questions or synthesizing informative edge cases) elicit responses that are often more informative than user-written prompts or labels. Users report that interactive task elicitation requires less effort than prompting or example labeling and surfaces novel considerations not initially anticipated by users. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.
Leveraging LLMs for Dialogue Quality Measurement
In task-oriented conversational AI evaluation, unsupervised methods poorly correlate with human judgments, and supervised approaches lack generalization. Recent advances in large language models (LLMs) show robust zeroshot and few-shot capabilities across NLP tasks. This paper explores using LLMs for automated dialogue quality evaluation, experimenting with various configurations on public and proprietary datasets. Manipulating factors such as model size, in-context examples, and selection techniques, we examine "chain-of-thought" (CoT) reasoning and label extraction procedures. Our results show that (1) larger models yield more accurate dialogue labels; (2) algorithmic selection of in-context examples outperforms random selection; (3) CoT reasoning where an LLM is asked to provide justifications before outputting final labels improves performance; and (4) fine-tuned LLMs outperform out-of-the-box ones. Our results indicate that LLMs that are suitably fine-tuned and have sufficient reasoning capabilities can be leveraged for automated dialogue evaluation.
Language Models can be Logical Solvers
Logical reasoning is a fundamental aspect of human intelligence and a key component of tasks like problem-solving and decision-making. Recent advancements have enabled Large Language Models (LLMs) to potentially exhibit reasoning capabilities, but complex logical reasoning remains a challenge. The state-of-the-art, solver-augmented language models, use LLMs to parse natural language logical questions into symbolic representations first and then adopt external logical solvers to take in the symbolic representations and output the answers. Despite their impressive performance, any parsing errors will inevitably result in the failure of the execution of the external logical solver and no answer to the logical questions. In this paper, we introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers and bypasses the parsing errors by learning to strict adherence to solver syntax and grammar. LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers. Experimental results on two public deductive reasoning datasets demonstrate that LoGiPT outperforms state-of-the-art solver-augmented LMs and few-shot prompting methods on competitive LLMs like ChatGPT or GPT-4.
Understanding the Effect of Noise in LLM Training Data with Algorithmic Chains of Thought
During both pretraining and fine-tuning, Large Language Models (LLMs) are trained on trillions of tokens of text of widely varying quality. Both phases of training typically involve heuristically filtering out ``low-quality'' or noisy training samples, yet little is known quantitatively about how the type or intensity of noise affects downstream performance. In this work, we study how noise in chain of thought (CoT) impacts task performance in the highly-controlled setting of algorithmically solvable tasks. First, we develop the Traced Integer (TInt) framework to generate highly customizable noised execution traces for any arithmetic function on lists of integers. We then define two types of noise: static noise, a local form of noise which is applied after the CoT trace is computed, and dynamic noise, a global form of noise which propagates errors in the trace as it is computed. We then evaluate the test performance of pretrained models both prompted and fine-tuned on noised datasets with varying levels of dataset contamination and intensity. We find fine-tuned models are extremely robust to high levels of static noise but struggle significantly more with lower levels of dynamic noise. In contrast, few-shot prompted models appear more sensitive to even static noise. We conclude with a discussion of how our findings impact noise filtering best-practices, in particular emphasizing the importance of removing samples containing destructive dynamic noise with global errors.
Enhancing Reasoning through Process Supervision with Monte Carlo Tree Search
Large language models (LLMs) have demonstrated their remarkable capacity across a variety of tasks. However, reasoning remains a challenge for LLMs. To improve LLMs' reasoning ability, process supervision has proven to be better than outcome supervision. In this work, we study using Monte Carlo Tree Search (MCTS) to generate process supervision data with LLMs themselves for training them. We sample reasoning steps with an LLM and assign each step a score that captures its "relative correctness," and the LLM is then trained by minimizing weighted log-likelihood of generating the reasoning steps. This generate-then-train process is repeated iteratively until convergence.Our experimental results demonstrate that the proposed methods considerably improve the performance of LLMs on two mathematical reasoning datasets. Furthermore, models trained on one dataset also exhibit improved performance on the other, showing the transferability of the enhanced reasoning ability.
Outcome-Refining Process Supervision for Code Generation
Large Language Models have demonstrated remarkable capabilities in code generation, yet they often struggle with complex programming tasks that require deep algorithmic reasoning. While process supervision through learned reward models shows promise in guiding reasoning steps, it requires expensive training data and suffers from unreliable evaluation. We propose Outcome-Refining Process Supervision, a novel paradigm that treats outcome refinement itself as the process to be supervised. Our framework leverages concrete execution signals to ground the supervision of reasoning steps, while using tree-structured exploration to maintain multiple solution trajectories simultaneously. Experiments demonstrate that our approach enables even smaller models to achieve high success accuracy and performance metrics on competitive programming tasks, creates more reliable verification than traditional reward models without requiring training PRMs. Our approach achieves significant improvements across 5 models and 3 datasets: an average of 26.9% increase in correctness and 42.2% in efficiency. The results suggest that providing structured reasoning space with concrete verification signals is crucial for solving complex programming tasks. We open-source all our code and data at: https://github.com/zhuohaoyu/ORPS
Japanese Tort-case Dataset for Rationale-supported Legal Judgment Prediction
This paper presents the first dataset for Japanese Legal Judgment Prediction (LJP), the Japanese Tort-case Dataset (JTD), which features two tasks: tort prediction and its rationale extraction. The rationale extraction task identifies the court's accepting arguments from alleged arguments by plaintiffs and defendants, which is a novel task in the field. JTD is constructed based on annotated 3,477 Japanese Civil Code judgments by 41 legal experts, resulting in 7,978 instances with 59,697 of their alleged arguments from the involved parties. Our baseline experiments show the feasibility of the proposed two tasks, and our error analysis by legal experts identifies sources of errors and suggests future directions of the LJP research.
PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.
Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning
Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, single-shot inference often yields unreliable results for complex reasoning tasks, leading researchers to explore multiple reasoning paths through methods such as perplexity and self-consistency. In this paper, we present the first theoretical error decomposition analysis of these techniques, breaking down their error into estimation error and model error. Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function, while self-consistency exhibits high estimation error due to a slow error convergence rate. To overcome these limitations, we propose Reasoning-Pruning Perplexity Consistency (RPC). This approach combines Perplexity Consistency, which seamlessly integrates LLM perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths to effectively prevent the degeneration of estimation error reduction. Theoretical analysis demonstrates that RPC not only accelerates the convergence rate of estimation error to an exponential level but also holds strong potential for further reducing model error. Extensive empirical evaluations on seven benchmark datasets confirm that RPC can significantly improve reasoning performance, sample efficiency, and confidence reliability.
Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data
One way to address safety risks from large language models (LLMs) is to censor dangerous knowledge from their training data. While this removes the explicit information, implicit information can remain scattered across various training documents. Could an LLM infer the censored knowledge by piecing together these implicit hints? As a step towards answering this question, we study inductive out-of-context reasoning (OOCR), a type of generalization in which LLMs infer latent information from evidence distributed across training documents and apply it to downstream tasks without in-context learning. Using a suite of five tasks, we demonstrate that frontier LLMs can perform inductive OOCR. In one experiment we finetune an LLM on a corpus consisting only of distances between an unknown city and other known cities. Remarkably, without in-context examples or Chain of Thought, the LLM can verbalize that the unknown city is Paris and use this fact to answer downstream questions. Further experiments show that LLMs trained only on individual coin flip outcomes can verbalize whether the coin is biased, and those trained only on pairs (x,f(x)) can articulate a definition of f and compute inverses. While OOCR succeeds in a range of cases, we also show that it is unreliable, particularly for smaller LLMs learning complex structures. Overall, the ability of LLMs to "connect the dots" without explicit in-context learning poses a potential obstacle to monitoring and controlling the knowledge acquired by LLMs.
CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues
This paper addresses the problem of dialogue reasoning with contextualized commonsense inference. We curate CICERO, a dataset of dyadic conversations with five types of utterance-level reasoning-based inferences: cause, subsequent event, prerequisite, motivation, and emotional reaction. The dataset contains 53,105 of such inferences from 5,672 dialogues. We use this dataset to solve relevant generative and discriminative tasks: generation of cause and subsequent event; generation of prerequisite, motivation, and listener's emotional reaction; and selection of plausible alternatives. Our results ascertain the value of such dialogue-centric commonsense knowledge datasets. It is our hope that CICERO will open new research avenues into commonsense-based dialogue reasoning.
LogiGAN: Learning Logical Reasoning via Adversarial Pre-training
We present LogiGAN, an unsupervised adversarial pre-training framework for improving logical reasoning abilities of language models. Upon automatic identifying logical reasoning phenomena in massive text corpus via detection heuristics, we train language models to predict the masked-out logical statements. Inspired by the facilitation effect of reflective thinking in human learning, we analogically simulate the learning-thinking process with an adversarial Generator-Verifier architecture to assist logic learning. LogiGAN implements a novel sequential GAN approach that (a) circumvents the non-differentiable challenge of the sequential GAN by leveraging the Generator as a sentence-level generative likelihood scorer with a learning objective of reaching scoring consensus with the Verifier; (b) is computationally feasible for large-scale pre-training with arbitrary target length. Both base and large size language models pre-trained with LogiGAN demonstrate obvious performance improvement on 12 datasets requiring general reasoning abilities, revealing the fundamental role of logic in broad reasoning, as well as the effectiveness of LogiGAN. Ablation studies on LogiGAN components reveal the relative orthogonality between linguistic and logic abilities and suggest that reflective thinking's facilitation effect might also generalize to machine learning.
Explanations from Large Language Models Make Small Reasoners Better
Integrating free-text explanations to in-context learning of large language models (LLM) is shown to elicit strong reasoning capabilities along with reasonable explanations. In this paper, we consider the problem of leveraging the explanations generated by LLM to improve the training of small reasoners, which are more favorable in real-production deployment due to their low cost. We systematically explore three explanation generation approaches from LLM and utilize a multi-task learning framework to facilitate small models to acquire strong reasoning power together with explanation generation capabilities. Experiments on multiple reasoning tasks show that our method can consistently and significantly outperform finetuning baselines across different settings, and even perform better than finetuning/prompting a 60x larger GPT-3 (175B) model by up to 9.5% in accuracy. As a side benefit, human evaluation further shows that our method can generate high-quality explanations to justify its predictions, moving towards the goal of explainable AI.
How susceptible are LLMs to Logical Fallacies?
This paper investigates the rational thinking capability of Large Language Models (LLMs) in multi-round argumentative debates by exploring the impact of fallacious arguments on their logical reasoning performance. More specifically, we present Logic Competence Measurement Benchmark (LOGICOM), a diagnostic benchmark to assess the robustness of LLMs against logical fallacies. LOGICOM involves two agents: a persuader and a debater engaging in a multi-round debate on a controversial topic, where the persuader tries to convince the debater of the correctness of its claim. First, LOGICOM assesses the potential of LLMs to change their opinions through reasoning. Then, it evaluates the debater's performance in logical reasoning by contrasting the scenario where the persuader employs logical fallacies against one where logical reasoning is used. We use this benchmark to evaluate the performance of GPT-3.5 and GPT-4 using a dataset containing controversial topics, claims, and reasons supporting them. Our findings indicate that both GPT-3.5 and GPT-4 can adjust their opinion through reasoning. However, when presented with logical fallacies, GPT-3.5 and GPT-4 are erroneously convinced 41% and 69% more often, respectively, compared to when logical reasoning is used. Finally, we introduce a new dataset containing over 5k pairs of logical vs. fallacious arguments. The source code and dataset of this work are made publicly available.
WHODUNIT: Evaluation benchmark for culprit detection in mystery stories
We present a novel data set, WhoDunIt, to assess the deductive reasoning capabilities of large language models (LLM) within narrative contexts. Constructed from open domain mystery novels and short stories, the dataset challenges LLMs to identify the perpetrator after reading and comprehending the story. To evaluate model robustness, we apply a range of character-level name augmentations, including original names, name swaps, and substitutions with well-known real and/or fictional entities from popular discourse. We further use various prompting styles to investigate the influence of prompting on deductive reasoning accuracy. We conduct evaluation study with state-of-the-art models, specifically GPT-4o, GPT-4-turbo, and GPT-4o-mini, evaluated through multiple trials with majority response selection to ensure reliability. The results demonstrate that while LLMs perform reliably on unaltered texts, accuracy diminishes with certain name substitutions, particularly those with wide recognition. This dataset is publicly available here.
Rather a Nurse than a Physician -- Contrastive Explanations under Investigation
Contrastive explanations, where one decision is explained in contrast to another, are supposed to be closer to how humans explain a decision than non-contrastive explanations, where the decision is not necessarily referenced to an alternative. This claim has never been empirically validated. We analyze four English text-classification datasets (SST2, DynaSent, BIOS and DBpedia-Animals). We fine-tune and extract explanations from three different models (RoBERTa, GTP-2, and T5), each in three different sizes and apply three post-hoc explainability methods (LRP, GradientxInput, GradNorm). We furthermore collect and release human rationale annotations for a subset of 100 samples from the BIOS dataset for contrastive and non-contrastive settings. A cross-comparison between model-based rationales and human annotations, both in contrastive and non-contrastive settings, yields a high agreement between the two settings for models as well as for humans. Moreover, model-based explanations computed in both settings align equally well with human rationales. Thus, we empirically find that humans do not necessarily explain in a contrastive manner.9 pages, long paper at ACL 2022 proceedings.
Variational Learning for Unsupervised Knowledge Grounded Dialogs
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document. These methods do not require the exact document to be known during training and rely on the use of a retrieval system to fetch relevant documents from a large index. The documents used to generate the responses are modeled as latent variables whose prior probabilities need to be estimated. Models such as RAG and REALM, marginalize the document probabilities over the documents retrieved from the index to define the log likelihood loss function which is optimized end-to-end. In this paper, we develop a variational approach to the above technique wherein, we instead maximize the Evidence Lower bound (ELBO). Using a collection of three publicly available open-conversation datasets, we demonstrate how the posterior distribution, that has information from the ground-truth response, allows for a better approximation of the objective function during training. To overcome the challenges associated with sampling over a large knowledge collection, we develop an efficient approach to approximate the ELBO. To the best of our knowledge we are the first to apply variational training for open-scale unsupervised knowledge grounded dialog systems.
Patience Is The Key to Large Language Model Reasoning
Recent advancements in the field of large language models, particularly through the Chain of Thought (CoT) approach, have demonstrated significant improvements in solving complex problems. However, existing models either tend to sacrifice detailed reasoning for brevity due to user preferences, or require extensive and expensive training data to learn complicated reasoning ability, limiting their potential in solving complex tasks. To bridge this gap, following the concept of scaling test-time, we propose a simple method by encouraging models to adopt a more patient reasoning style without the need of introducing new knowledge or skills. To employ a preference optimization approach, we generate detailed reasoning processes as positive examples and simple answers as negative examples, thereby training the model to favor thoroughness in its responses. Our results demonstrate a performance increase of up to 6.7% on GSM8k with training just on a lightweight dataset.
From Heuristic to Analytic: Cognitively Motivated Strategies for Coherent Physical Commonsense Reasoning
Pre-trained language models (PLMs) have shown impressive performance in various language tasks. However, they are prone to spurious correlations, and often generate illusory information. In real-world applications, PLMs should justify decisions with formalized, coherent reasoning chains, but this challenge remains under-explored. Cognitive psychology theorizes that humans are capable of utilizing fast and intuitive heuristic thinking to make decisions based on past experience, then rationalizing the decisions through slower and deliberative analytic reasoning. We incorporate these interlinked dual processes in fine-tuning and in-context learning with PLMs, applying them to two language understanding tasks that require coherent physical commonsense reasoning. We show that our proposed Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions, yielding state-of-the-art results on Tiered Reasoning for Intuitive Physics (TRIP). We also find that this improved coherence is a direct result of more faithful attention to relevant language context in each step of reasoning. Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts
Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.
Evaluating and Aggregating Feature-based Model Explanations
A feature-based model explanation denotes how much each input feature contributes to a model's output for a given data point. As the number of proposed explanation functions grows, we lack quantitative evaluation criteria to help practitioners know when to use which explanation function. This paper proposes quantitative evaluation criteria for feature-based explanations: low sensitivity, high faithfulness, and low complexity. We devise a framework for aggregating explanation functions. We develop a procedure for learning an aggregate explanation function with lower complexity and then derive a new aggregate Shapley value explanation function that minimizes sensitivity.